點M(x,y,z)在坐標平面xOy內的射影為M1,M1在坐標平面yOz內的射影為M2,M2在坐標平面xOz內的射影為M3,則M3的坐標為( 。
A、(-x,-y,-z)
B、(x,y,z)
C、(0,0,0)
D、(
x+y+z
3
,
x+y+z
3
,
x+y+z
3
考點:空間向量的數(shù)量積運算
專題:空間向量及應用
分析:利用射影的定義、在坐標平面內的點的特點即可得出.
解答: 解:點M(x,y,z)在坐標平面xOy內的射影為M1(x,y,0),
M1在坐標平面yOz內的射影為M2(0,y,0),
M2在坐標平面xOz內的射影為M3(0,0,0).
∴M3的坐標為(0,0,0).
故選:C.
點評:本題考查了射影的定義、在坐標平面內的點的特點,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知cosα=
1
3
,α∈(π,2π),則cos
α
2
=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

△ABC的外接圓半徑為1,圓心為O,且3
OA
+4
OB
+5
OC
=
0
,則
OC
AB
上的投影為( 。
A、-
2
10
B、
2
10
C、-
3
2
5
D、
3
2
5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

過雙曲線的右焦點F作實軸所在直線的垂線,交雙曲線于A,B兩點,設雙曲線的左頂點為M,若△MAB是直角三角形,則此雙曲線的離心率e的值為( 。
A、
3
2
B、2
C、
2
D、
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,O為平面內一點,且設
OA
=
a
,
OB
=
b
,
OC
=
c
,則滿足條件(
a
+
b
)•
AB
=(
b
+
c
)•
BC
=(
c
+
a
)•
CA
時,O是△ABC的(  )
A、內心B、外心C、垂心D、重心

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知方程
|cosx|
x
=k在(0,+∞)上有兩個不同的解α,β(α<β),則下面結論正確的是( 。
A、tan(α+
π
4
)=
α+1
α-1
B、tan(α+
π
4
)=
α-1
α+1
C、tan(β+
π
4
)=
β+1
β-1
D、tan(β+
π
4
)=
β-1
β+1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=2sin2x的圖象的一個對稱中心是(  )
A、(
π
2
,2)
B、(
π
4
,0)
C、(
π
4
,2)
D、(
π
2
,0)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

高三年級有5個班級參加學校運動會100米跑決賽,共有5個跑道,若在安排比賽賽道時不將甲班安排在第一及第二賽道上,且甲班和乙班不相鄰,則不同的安排方法有(  )
A、24種B、30種
C、36種D、42種

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線l:
x
4
+
y
3
=1,M是l上一動點,過M作x軸、y軸的垂線,垂足分別為A、B,求在A、B連線上,且滿足
AP
=2
PB
的點P的軌跡方程.

查看答案和解析>>

同步練習冊答案