14.已知$\vec a=({1,3})$,$\vec b=({-2,k})$,且$({\vec a+2\vec b})∥({3\vec a-\vec b})$,則實(shí)數(shù)k=-6.

分析 利用向量坐標(biāo)運(yùn)算性質(zhì)、向量共線定理即可得出.

解答 解:$\overrightarrow{a}+2\overrightarrow$=(-3,3+2k),$3\overrightarrow{a}$-$\overrightarrow$=(5,9-k).
∵$({\vec a+2\vec b})∥({3\vec a-\vec b})$,∴-3(9-k)-5(3+2k)=0,
解得k=-6.
故答案為:-6.

點(diǎn)評(píng) 本題考查了向量坐標(biāo)運(yùn)算性質(zhì)、向量共線定理,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.設(shè)集合M={x|2x+1>1},N={x|lnx≤1},則M∩N等于( 。
A.(-∞,e]B.(-1,1]C.(0,1)D.(0,e]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.設(shè)命題P:?n∈N,n2<2n,則¬P為( 。
A.?n∈N,n2<2nB.?n∈N,n2≥2nC.?n∈N,n2≥2nD.?n∈N,n2>2n

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.用數(shù)學(xué)歸納法證明不等$\frac{1}{n+1}+\frac{1}{n+2}+…+\frac{1}{2n}>\frac{11}{24}({n∈{N^*}})$式的過(guò)程中,由n=k遞推到n=k+1時(shí),下列說(shuō)法正確的是(  )
A.增加了一項(xiàng)$\frac{1}{{2({k+1})}}$B.增加了兩項(xiàng)$\frac{1}{2k+1}$和$\frac{1}{{2({k+1})}}$
C.增加了B中兩項(xiàng),但又少了一項(xiàng)$\frac{1}{k+1}$D.增加了A中一項(xiàng),但又少了一項(xiàng)$\frac{1}{k+1}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.在如圖所示的正方形中隨機(jī)投擲10000個(gè)點(diǎn),則落入陰影部分(曲線C的方程為x2-y=0)的點(diǎn)的個(gè)數(shù)的估計(jì)值為( 。
A.5000B.6667C.7500D.7854

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知點(diǎn)F為橢圓$E:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左焦點(diǎn),且兩焦點(diǎn)與短軸的一個(gè)頂點(diǎn)構(gòu)成一個(gè)等邊三角形,直線$\frac{x}{4}+\frac{y}{2}=1$與橢圓E有且僅有一個(gè)交點(diǎn)M.
(Ⅰ)求橢圓E的方程;
(Ⅱ)設(shè)直線$\frac{x}{4}+\frac{y}{2}=1$與y軸交于P,過(guò)點(diǎn)P的直線與橢圓E交于兩不同點(diǎn)A,B,若λ|PM|2=|PA|•|PB|,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.若x0是方程lnx+x-3=0的實(shí)數(shù)解,則x0屬于區(qū)間( 。
A.(1,1.5)B.(1.5,2)C.(2,2.5)D.(2.5,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知函數(shù)f(x)=|x-a|.
(Ⅰ)若a=1,解不等式:f(x)≥4-|x-3|;
(Ⅱ)若f(x)≤1的解集為[0,2],$\frac{1}{m}+\frac{1}{2n}=a$(m>0,n>0),求mn的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.定義在[0,+∞)上的函數(shù)f(x)滿足:①當(dāng)x∈[1,2)時(shí),$f(x)=\frac{1}{2}-|{x-\frac{3}{2}}|$;②?x∈[0,+∞)都有f(2x)=2f(x).設(shè)關(guān)于x的函數(shù)F(x)=f(x)-a的零點(diǎn)從小到大依次為x1,x2,x3,…xn,…,若$a∈({\frac{1}{2},1})$,則x1+x2+…+x2n=6×(2n-1).

查看答案和解析>>

同步練習(xí)冊(cè)答案