【題目】空氣質(zhì)量按照空氣質(zhì)量指數(shù)大小分為七檔(五級),相對應(yīng)空氣質(zhì)量的七個類別,指數(shù)越大,說明污染的情況越嚴(yán)重,對人體危害越大.
指數(shù) | 級別 | 類別 | 戶外活動建議 |
Ⅰ | 優(yōu) | 可正;顒 | |
Ⅱ | 良 | ||
Ⅲ | 輕微污染 | 易感人群癥狀有輕度加劇,健康人群出現(xiàn)刺激癥狀,心臟病和呼吸系統(tǒng)疾病患者應(yīng)減少體積消耗和戶外活動. | |
輕度污染 | |||
Ⅳ | 中度污染 | 心臟病和肺病患者癥狀顯著加劇,運(yùn)動耐受力降低,健康人群中普遍出現(xiàn)癥狀,老年人和心臟病、肺病患者應(yīng)減少體力活動. | |
中度重污染 | |||
Ⅴ | 重污染 | 健康人運(yùn)動耐受力降低,由明顯強(qiáng)烈癥狀,提前出現(xiàn)某些疾病,老年人和病人應(yīng)當(dāng)留在室內(nèi),避免體力消耗,一般人群應(yīng)盡量減少戶外活動. |
現(xiàn)統(tǒng)計包頭市市區(qū)2016年10月至11月連續(xù)60天的空氣質(zhì)量指數(shù),制成如圖所示的頻率分布直方圖.
(Ⅰ)求這60天中屬輕度污染的天數(shù);
(Ⅱ)將頻率分布直方圖中的五組從左到右依次命名為第一組,第二組,…,第五組.從第一組和第五組中的所有天數(shù)中抽出兩天,記它們的空氣質(zhì)量指數(shù)分別為,求事件的概率.
【答案】(Ⅰ)9天(Ⅱ)
【解析】
(Ⅰ)由頻率分布直方圖求出空氣質(zhì)量指數(shù)在[150,200)的頻率,由此能求出這60天中屬輕度污染的天數(shù);
(Ⅱ)由頻率分布直方圖求出第一組的頻率為0.1,從而第一組的天數(shù)為6天,第五組的頻率為0.05,從而第五組的天數(shù)為3天,從第一組和第五組中的所有天數(shù)中抽出兩天,記它們的空氣質(zhì)量指數(shù)分別為x,y,基本事件總數(shù)n==36,事件|x﹣y|≤150包含的基本事件個數(shù)m==18,由此能求出事件|x﹣y|≤150的概率.
(Ⅰ)由頻率分布直方圖得:
空氣質(zhì)量指數(shù)在[150,200)的頻率為0.003×50=0.15,
∴這60天中屬輕度污染的天數(shù)為:60×0.15=9天;
(Ⅱ)由頻率分布直方圖得:
第一組的頻率為0.002×50=0.1,第一組的天數(shù)為60×0.1=6天,
第五組的頻率為0.001×50=0.05,第五組的天數(shù)為60×0.05=3天,
從第一組和第五組中的所有天數(shù)中抽出兩天,記它們的空氣質(zhì)量指數(shù)分別為x,y,
基本事件總數(shù)n==36,
事件|x﹣y|≤150包含的基本事件個數(shù)m==18,
∴事件|x﹣y|≤150的概率P==.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面是直角梯形,側(cè)棱底面, 垂直于和,為棱上的點,,.
(1)若為棱的中點,求證://平面;
(2)當(dāng)時,求平面與平面所成的銳二面角的余弦值;
(3)在第(2)問條件下,設(shè)點是線段上的動點,與平面所成的角為,求當(dāng)取最大值時點的位置.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間
(2)當(dāng)時,求函數(shù)在上的最大值
(3)當(dāng)時,又設(shè)函數(shù),求證:當(dāng),且時,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面是矩形,是的中點,平面,且,.
(1)求證:;
(2)求與平面所成角的正弦值;
(3)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】袋中裝有除顏色外形狀大小完全相同的6個小球,其中有4個編號為1,2, 3, 4的紅球,2個編號為A、B的黑球,現(xiàn)從中任取2個小球.;
(1)求所取2個小球都是紅球的概率;
(2)求所取的2個小球顏色不相同的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線的中心在原點,焦點F1,F2在坐標(biāo)軸上,離心率為,且過點.點M(3,m)在雙曲線上.
(1)求雙曲線的方程;
(2)求證:;
(3)求△F1MF2的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)若,求的單調(diào)區(qū)間和極值點;
(2)若在單調(diào)遞增,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com