分析 (1)利用等比數(shù)列通項(xiàng)公式列出方程,求出首項(xiàng)和公比,由此能求出數(shù)列{an}的通項(xiàng)公式.
(2)由bn=log2an=$lo{g}_{2}{2}^{n}$=n,利用等差數(shù)列前n項(xiàng)和公式能求出數(shù)列{bn}的前n項(xiàng)和.
解答 解:(1)∵在等比數(shù)列{an}中,a1+a2=6,a2+a3=12.
∴q=$\frac{{a}_{2}+{a}_{3}}{{a}_{1}+{a}_{2}}$=$\frac{12}{6}$=2,…(2分)
∴a1+2a1=6,解得 a1=2…(3分)
∴數(shù)列{an}的通項(xiàng)公式 ${a_n}={2^n}$…(5分)
(2)∵bn=log2an=$lo{g}_{2}{2}^{n}$=n…(7分)
∴數(shù)列{bn}的前n項(xiàng)和:
Tn=1+2+3+…+n=$\frac{n(n+1)}{2}$.…(10分)
點(diǎn)評(píng) 本題考查數(shù)列的通項(xiàng)公式的求法,考查數(shù)列的前n項(xiàng)和的求法,考查等比數(shù)列、等差數(shù)列等基礎(chǔ)知識(shí),考查推理論證能力、運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想、函數(shù)與方程思想,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{9}{5}$ | B. | $\frac{11}{6}$ | C. | $\frac{13}{7}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 程序不同結(jié)果不同 | B. | 程序相同,結(jié)果相同 | ||
C. | 程序相同結(jié)果不同 | D. | 程序不同,結(jié)果相同 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com