(2011•黃岡模擬)有三個命題①函數(shù)y=
x
-1(x≥0)
的反函數(shù)是y=(x+1)2(x∈R)②函數(shù)f(x)=lnx+x-2的圖象與x軸有2個交點;③函數(shù)y=
9-x2
|x+4|+|x-3|
的圖象關(guān)于y軸對稱.其中真命題是( 。
分析:對于①,欲求原函數(shù)y=
x
-1(x≥0)的反函數(shù),即從原函數(shù)式中反解出x,后再進(jìn)行x,y互換,即得反函數(shù)的解析式.對于②,利用函數(shù)f(x)的單調(diào)性,與函數(shù)的零點與方程的根判斷即可;對于③,通過函數(shù)f(x)的奇偶性判斷即可.
解答:解:對于①,∵y=
x
-1(x≥0),
∴x=(y+1)2(y≥-1),
∴x,y互換,得y=(x+1)2(x≥-1).故不正確.
對于②,考察f(x)的單調(diào)性,lnx和x-2在(0,+∞)上是增函數(shù),
故f(x)=lnx+x-2在(0,+∞)上是增函數(shù),圖象與x軸最多有1個交點,故不正確.
 對于③,函數(shù)的定義域為[-3,3],所以,函數(shù)化簡為:y=
9-x2
7
是偶函數(shù),圖象關(guān)于y軸對稱,正確.
故選C.
點評:本小題主要考查函數(shù)單調(diào)性的應(yīng)用、函數(shù)奇偶性的應(yīng)用、反函數(shù)等基礎(chǔ)知識,考查運算求解能力,考查數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想.屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2011•黃岡模擬)已知:如圖|
OA
|=|
OB
|=1,
OA
OB
的夾角為120°,
OC
OA
的夾角為30°,若
OC
OA
OB
(λ,μ∈R)則
λ
μ
等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•黃岡模擬)已知{an}是正數(shù)組成的數(shù)列,a1=1,且點(
an
an+1)(n∈N*)
在函數(shù)y=x2+1的圖象上.?dāng)?shù)列{bn}滿足b1=0,bn+1=bn+3an(n∈N*).
(I)求數(shù)列{an},{bn}的通項公式;
(II)若cn=anbncosnπ(n∈N*),求數(shù)列{cn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•黃岡模擬)在△ABC所在的平面內(nèi)有一點P,如果
PA
+
PB
+
PC
=
AB
,那么△PAB的面積與△ABC的面積之比是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•黃岡模擬)在△ABC中,C=60°,AB=
3
,BC=
2
,那么A等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•黃岡模擬)分形幾何學(xué)是美籍法國數(shù)學(xué)家伯努瓦••B•曼德爾布羅特(Benoit B.Mandelbrot) 在20世紀(jì)70年代創(chuàng)立的一門新學(xué)科,它的創(chuàng)立,為解決傳統(tǒng)科學(xué)眾多領(lǐng)域的難題提供了全新的思路.下圖按照的分形規(guī)律生長成一個樹形圖,則第10行的空心圓點的個數(shù)是(  )

查看答案和解析>>

同步練習(xí)冊答案