【題目】盲盒里面通常裝的是動漫、影視作品的周邊,或者設計師單獨設計出來的玩偶.由于盒子上沒有標注,購買者只有打開才會知道自己買到了什么,因此這種驚喜吸引了眾多年輕人,形成了“盲盒經(jīng)濟”.某款盲盒內可能裝有某一套玩偶的、、三種樣式,且每個盲盒只裝一個.
(1)若每個盲盒裝有、、三種樣式玩偶的概率相同.某同學已經(jīng)有了樣式的玩偶,若他再購買兩個這款盲盒,恰好能收集齊這三種樣式的概率是多少?
(2)某銷售網(wǎng)點為調查該款盲盒的受歡迎程度,隨機發(fā)放了200份問卷,并全部收回.經(jīng)統(tǒng)計,有的人購買了該款盲盒,在這些購買者當中,女生占;而在未購買者當中,男生女生各占.請根據(jù)以上信息填寫下表,并分析是否有的把握認為購買該款盲盒與性別有關?
女生 | 男生 | 總計 | |
購買 | |||
未購買 | |||
總計 |
參考公式:,其中.
參考數(shù)據(jù):
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(3)該銷售網(wǎng)點已經(jīng)售賣該款盲盒6周,并記錄了銷售情況,如下表:
周數(shù) | 1 | 2 | 3 | 4 | 5 | 6 |
盒數(shù) | 16 | ______ | 23 | 25 | 26 | 30 |
由于電腦故障,第二周數(shù)據(jù)現(xiàn)已丟失,該銷售網(wǎng)點負責人決定用第4、5、6周的數(shù)據(jù)求線性回歸方程,再用第1、3周數(shù)據(jù)進行檢驗.
①請用4、5、6周的數(shù)據(jù)求出關于的線性回歸方程;
(注:,)
②若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2盒,則認為得到的線性回歸方程是可靠的,試問①中所得的線性回歸方程是否可靠?
③如果通過②的檢驗得到的回歸直線方程可靠,我們可以認為第2周賣出的盒數(shù)誤差也不超過2盒,請你求出第2周賣出的盒數(shù)的可能取值;如果不可靠,請你設計一個估計第2周賣出的盒數(shù)的方案.
【答案】(1);(2)表格見解析,有把握認為購買該款盲盒與性別有關;(3)①;②是可靠的;③第2周賣出的盒數(shù)的可能值為18、19、20、21.
【解析】
(1)用列舉法寫出所有基本事件,再從中找出滿足要求的基本事件,用古典概型的公式即可求得結果;
(2)通過計算,完成列聯(lián)表,再計算出觀測值,比表中0.05所對應的數(shù)據(jù)3.841大,故得出結論“有把握認為購買該款盲盒與性別有關”;
(3)①將第4、5、6周的數(shù)據(jù)代入公式,計算出和,寫出回歸直線方程;
②將第1、3周的數(shù)據(jù)代入①所求出的回歸直線方程進行檢驗,該方程可靠;
③將代入①所求出的回歸直線方程,解得,根據(jù)可靠性的要求,以及該應用題的實際要求,得出第2周賣出的盒數(shù)的可能取值.
解:(1)由題意,基本事件空間為
,
其中基本事件的個數(shù)為9,
設事件為:“他恰好能收集齊這三種樣式”,則
,其中基本事件的個數(shù)為2,
則他恰好能收集齊這三種樣式的概率;
(2)
女生 | 男生 | 總計 | |
購買 | 40 | 20 | 60 |
未購買 | 70 | 70 | 140 |
110 | 90 | 200 |
,
又因為,
故有把握認為“購買該款盲盒與性別有關”;
(3)①由數(shù)據(jù),求得,,
由公式求得
,
,
所以關于的線性回歸方程為;
②當時,,,
同樣,當時,,,
所以,所得到的線性回歸方程是可靠的;
③由②可知回歸直線方程可靠,
時,
設第二周賣出的盒數(shù)為,
則,
,
∴能取18、19、20、21,
即第2周賣出的盒數(shù)的可能值為18、19、20、21.
科目:高中數(shù)學 來源: 題型:
【題目】為了提高生產(chǎn)線的運行效率,工廠對生產(chǎn)線的設備進行了技術改造.為了對比技術改造后的效果,采集了生產(chǎn)線的技術改造前后各20次連續(xù)正常運行的時間長度(單位:天)數(shù)據(jù),并繪制了如下莖葉圖:
(Ⅰ)(1)設所采集的40個連續(xù)正常運行時間的中位數(shù),并將連續(xù)正常運行時間超過和不超過的次數(shù)填入下面的列聯(lián)表:
超過 | 不超過 | |
改造前 | ||
改造后 |
試寫出,,,的值;
(2)根據(jù)(1)中的列聯(lián)表,能否有的把握認為生產(chǎn)線技術改造前后的連續(xù)正常運行時間有差異?
附:,
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
(Ⅱ)工廠的生產(chǎn)線的運行需要進行維護.工廠對生產(chǎn)線的生產(chǎn)維護費用包括正常維護費、保障維護費兩種對生產(chǎn)線設定維護周期為天(即從開工運行到第天()進行維護.生產(chǎn)線在一個生產(chǎn)周期內設置幾個維護周期,每個維護周期相互獨立.在一個維護周期內,若生產(chǎn)線能連續(xù)運行,則不會產(chǎn)生保障維護費;若生產(chǎn)線不能連續(xù)運行,則產(chǎn)生保障維護費.經(jīng)測算,正常維護費為0.5萬元次;保障維護費第一次為0.2萬元周期,此后每增加一次則保障維護費增加0.2萬元.現(xiàn)制定生產(chǎn)線一個生產(chǎn)周期(以120天計)內的維護方案:,,2,3,4.以生產(chǎn)線在技術改造后一個維護周期內能連續(xù)正常運行的頻率作為概率,求一個生產(chǎn)周期內生產(chǎn)維護費的分布列及期望值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系xOy中,以坐標原點為極點,x軸正半軸為極軸建立極坐標系,曲線C1的極坐標方程為ρsinθ=2.
(1)M為曲線C1上的動點,點P在線段OM上,且滿足,求點P的軌跡C2的直角坐標方程;
(2)曲線C2上兩點與點B(ρ2,α),求△OAB面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設,,為兩兩不重合的平面,,,為兩兩不重合的直線,給出下列四個命題:
①若,,則;
②若,,,,則;
③若,,則;
④若,,,,則.
其中真命題是( )
A.①③B.②④C.③④D.①②
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知曲線的極坐標方程為,以極點為原點,極軸所在直線為軸建立直角坐標系,過點作傾斜角為()的直線交曲線于、兩點.
(1)求曲線的直角坐標方程,并寫出直線的參數(shù)方程;
(2)過點的另一條直線與垂直,且與曲線交于,兩點,求的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=(2﹣a)(x﹣1)﹣2lnx,g(x)= (a∈R,e為自然對數(shù)的底數(shù))
(Ⅰ)當a=1時,求f(x)的單調區(qū)間;
(Ⅱ)若函數(shù)f(x)在 上無零點,求a的最小值;
(Ⅲ)若對任意給定的x0∈(0,e],在(0,e]上總存在兩個不同的xi(i=1,2),使得f(xi)=g(x0)成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2020年春節(jié)前后,一場突如其來的新冠肺炎疫情在全國蔓延.疫情就是命令,防控就是責任.在黨中央的堅強領導和統(tǒng)一指揮下,全國人民眾志成城、團結一心,掀起了一場堅決打贏疫情防控阻擊戰(zhàn)的人民戰(zhàn)爭.下側的圖表展示了2月14日至29日全國新冠肺炎疫情變化情況,根據(jù)該折線圖,下列結論正確的是( )
A.16天中每日新增確診病例數(shù)量呈下降趨勢且19日的降幅最大
B.16天中每日新增確診病例的中位數(shù)大于新增疑似病例的中位數(shù)
C.16天中新增確診、新增疑似、新增治愈病例的極差均大于
D.19日至29日每日新增治愈病例數(shù)量均大于新增確診與新增疑似病例之和
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在貫徹中共中央、國務院關于精準扶貧政策的過程中,某單位在某市定點幫扶某村100戶貧困戶.為了做到精準幫扶,工作組對這100戶村民的年收入情況、危舊房情況、患病情況等進行調查,并把調查結果轉化為各戶的貧困指標,將指標按照,,,,分成五組,得到如圖所示的頻率分布直方圖.規(guī)定若,則認定該戶為“絕對貧困戶”,否則認定該戶為“相對貧困戶”;當時,認定該戶為“亟待幫住戶”.
(1)為了更好的了解和幫助該村的這些貧困戶,決定用分層抽樣的方法從這100戶中隨機抽取20戶進行更深入的調查,求應該抽取“絕對貧困戶”的戶數(shù);
(2)從這20戶中任取3戶,求“絕對貧困戶”多于“相對貧困戶”的概率;
(3)現(xiàn)在從(1)中所抽取的“絕對貧困戶”中任取3戶,用表示所選3戶中“亟待幫助戶”的戶數(shù),求的分布列和數(shù)學期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com