分析 由等比數(shù)列通項(xiàng)公式列出方程組,求出首項(xiàng)和公比,由此能求出$\lim_{n→∞}$(a1+a2+…+an).
解答 解:∵等比數(shù)列{an}的公比q滿足|q|<1,且a2a4=4,a3+a4=3,
∴$\left\{\begin{array}{l}{{a}_{1}q•{a}_{1}{q}^{3}=4}\\{{a}_{1}{q}^{2}+{a}_{1}{q}^{3}=3}\end{array}\right.$,
由|q|<1,解得${a}_{1}=8,q=\frac{1}{2}$,
a1+a2+…+an=$\frac{8(1-\frac{1}{{2}^{n}})}{1-\frac{1}{2}}$,
則$\lim_{n→∞}$(a1+a2+…+an)=$\underset{lim}{n→∞}\frac{8(1-\frac{1}{{2}^{n}})}{1-\frac{1}{2}}$=16.
故答案為:16.
點(diǎn)評(píng) 本題考查等比數(shù)列的前n項(xiàng)和的極限值的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意等比數(shù)列的性質(zhì)的合理運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | f(x)=${x}^{\frac{1}{2}}$ | B. | f(x)=x3 | C. | f(x)=($\frac{1}{2}$)x | D. | f(x)=lo${g}_{\frac{1}{2}}$x |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com