17.根據(jù)條件求解下列問題
(1)函數(shù)f(x)=$\left\{\begin{array}{l}{x+2(x≤-1)}\\{{x}^{2}(-1<x<2)}\\{2x(x≥2)}\end{array}\right.$,若f(x)=3,求x;
(2)求函數(shù)的值域:y=$\frac{3x-1}{x+1}$.

分析 (1)由各段的函數(shù)值等于3求解得答案;
(2)把已知函數(shù)解析式變形,利用反比例型函數(shù)的值域求解.

解答 解:(1)由f(x)=$\left\{\begin{array}{l}{x+2(x≤-1)}\\{{x}^{2}(-1<x<2)}\\{2x(x≥2)}\end{array}\right.$,且f(x)=3,得
$\left\{\begin{array}{l}{x+2=3}\\{x≤-1}\end{array}\right.$①,或$\left\{\begin{array}{l}{{x}^{2}=3}\\{-1<x<2}\end{array}\right.$②,或$\left\{\begin{array}{l}{2x=3}\\{x≥2}\end{array}\right.$.
解得①得:x不存在,解②得:x=$\sqrt{3}$,解③得:x不存在.
∴x=$\sqrt{3}$;
(2)y=$\frac{3x-1}{x+1}$=$\frac{3(x+1)-4}{x+1}=3-\frac{4}{x+1}$.
∵$\frac{4}{x+1}≠0$,∴3-$\frac{4}{x+1}≠3$.
故函數(shù)y=$\frac{3x-1}{x+1}$的值域?yàn)閧y|y≠3}.

點(diǎn)評 本題考查函數(shù)的零點(diǎn)與方程根的關(guān)系,考查了函數(shù)值域的求法,體現(xiàn)了分類討論的數(shù)學(xué)思想方法,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.函數(shù)f(x)的圖象是如圖所示的折線段OAB,點(diǎn)A坐標(biāo)為(1,2),點(diǎn)B坐標(biāo)為(3,0),
定義函數(shù)g(x)=f(x)•(x-1),則函數(shù)g(x)最大值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.如圖是一個(gè)算法流程圖,則輸出的n的值是6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知三棱錐P-A BC四個(gè)頂點(diǎn)都在半徑為2的球面上,PA⊥面ABC,PA=2,底面ABC是正三角形,點(diǎn)E是線段AB的中點(diǎn),過點(diǎn)E作球O的截面,則截面面積的最小值是( 。
A.$\frac{7π}{4}$B.C.$\frac{9π}{4}$D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.某工廠對一批產(chǎn)品進(jìn)行了抽樣檢測,如圖是根據(jù)抽樣檢測后的產(chǎn)品凈重(單位:克)數(shù)據(jù)繪制的頻率分布直方圖,其中產(chǎn)品凈重的范圍是[96,106],樣本數(shù)據(jù)分組為[96,98),[98,100),[100,102),[102,104),(104,106],已知樣本中產(chǎn)品凈重小于100克的個(gè)數(shù)是36,則樣本中凈重大于或等于98克并且小于104克的產(chǎn)品的個(gè)數(shù)是( 。
A.90B.75C.60D.45

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知等差數(shù)列{an}中,a3+a11=50,a4=13,則數(shù)列{an}的公差等于( 。
A.1B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知三被錐S-ABC的體積為$\frac{4\sqrt{5}}{3}$,底面△ABC是邊長為2的正三角形,且所有頂點(diǎn)都在直徑為SC的球面上.則此球的半徑為2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.籠內(nèi)關(guān)有6只果蠅,不慎混入2只蒼蠅,只好把籠子打開一個(gè)小孔,讓蠅子一只一只飛出去,直到2只蒼蠅都飛出籠子時(shí),籠內(nèi)還有3只果蠅的概率等于( 。
A.$\frac{27}{256}$B.$\frac{1}{7}$C.$\frac{5}{14}$D.$\frac{27}{64}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.過雙曲線$\frac{x^2}{9}-\frac{y^2}{16}=1$的左焦點(diǎn)F引圓x2+y2=9的切線,切點(diǎn)為T,延長FT交雙曲線右支于點(diǎn)P,若M為線段FP的中點(diǎn),O為坐標(biāo)原點(diǎn),則|MO|-|MT|為( 。
A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊答案