設(shè)x,y∈R且滿足
x≥1
x+y-6≤0
y≥x
,則z=x+2y的最小值等于
 
考點:簡單線性規(guī)劃
專題:不等式的解法及應(yīng)用
分析:作出可行域,利用平移即求出z的最小值.
解答: 解:由z=x+2y,得y=-
1
2
x+
z
2
,作出不等式對應(yīng)的可行域,
平移直線y=-
1
2
x+
z
2
,由平移可知當直線y=-
1
2
x+
z
2
經(jīng)過點A時,直線y=-
1
2
x+
z
2
的截距最小,
此時z取得最小值,
x=1
y=x
,解得
x=1
y=1
,即A(1,1),
代入z=x+2y,得z=1+2×1=3,
z=x+2y的最小值等于3
故答案為:3;
點評:本題主要考查線性規(guī)劃的應(yīng)用,利用圖象平行求得目標函數(shù)的最小值,利用數(shù)形結(jié)合是解決線性規(guī)劃問題中的基本方法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=(1,
3
),
b
=(sinx,cosx),且函數(shù)f(x)=
a
b
(x∈R).
(1)求函數(shù)f(x)的最小正周期;
(2)求函數(shù)f(x)的最大值及取得最大值時自變量x的集合;
(3)求函數(shù)f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計算由曲線y=9-x2與直線y=x+7圍成的封閉區(qū)域的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列命題:
①函數(shù)y=cos(2x-
π
6
)圖象的一條對稱軸是x=
12

②在同一坐標系中,函數(shù)y=sinx與y=lgx的交點個數(shù)為3個;
③將函數(shù)y=sin(2x+
π
3
)的圖象向右平移
π
3
個單位長度可得到函數(shù)y=sin2x的圖象;
④存在實數(shù)x,使得等式sinx+cosx=
3
2
成立;
其中正確的命題為
 
(寫出所有正確命題的序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C所對的邊分別為a,b,c,已知a=2,c=3,cosB=
1
4
,求cosC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在下面演繹推理中:“∵|sinx|≤1,又m=sinα,∴|m|≤1”,大前提是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果實數(shù)x,y滿足約束條件
x≥1
x-y+1≥0
2x-y-2≤0
,則x-2y的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=sinx-cos(x+
π
6
)的值域為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x,y滿足約束條件
x≤1
y≤2
2x+y-2≥0
,則目標函數(shù)z=
x2+y2
的最小值為
 

查看答案和解析>>

同步練習(xí)冊答案