【題目】已知圓的半徑為3,圓心在軸正半軸上,直線與圓相切.
(1)求圓的標準方程;
(2)過點的直線與圓交于不同的兩點,而且滿足,求直線的方程.
【答案】(1) (x﹣2)2+y2=9 (2) x﹣y﹣3=0,17x﹣7y﹣21=0,x=0
【解析】試題分析:
(1)可設圓心坐標為,由直線與圓相切,知圓心M到切線的距離等于半徑,可求得,從而得圓的標準方程;
(2)注意分類討論,當直線斜率不存在時,代入求出A、B兩點坐標,檢驗是否符合題意;當直線斜率存在時,設斜率為,得直線方程為,代入圓的方程,由韋達定理得,代入已知等式可求得的值,從而得直線方程.
試題解析:
(I)設圓心為M(a,0)(a>0),
∵直線3x﹣4y+9=0與圓M相切
∴=3.
解得a=2,或a=﹣8(舍去),
所以圓的方程為:(x﹣2)2+y2=9
(II)當直線L的斜率不存在時,直線L:x=0,與圓M交于A(0,),B(0,﹣),
此時+=x1x2=0,所以x=0符合題意
當直線L的斜率存在時,設直線L:y=kx﹣3,
由消去y,得(x﹣2)2+(kx﹣3)2=9,
整理得:(1+k2)x2﹣(4+6k)x+4=0.........................................................(1)
所以
由已知得:
整理得:7k2﹣24k+17=0,∴
把k值代入到方程(1)中的判別式△=(4+6)2﹣16(1+k2)=48k+20k2中,
判別式的值都為正數,所以,所以直線L為:,
即x﹣y﹣3=0,17x﹣7y﹣21=0
綜上:直線L為:x﹣y﹣3=0,17x﹣7y﹣21=0,x=0
科目:高中數學 來源: 題型:
【題目】某種計算機病毒是通過電子郵件進行傳播的,下表是某公司前5天監(jiān)測到的數據:
第天 | 1 | 2 | 3 | 4 | 5 |
被感染的計算機數量(臺) | 10 | 20 | 39 | 81 | 160 |
則下列函數模型中,能較好地反映計算機在第天被感染的數量與之間的關系的是
A. B.
C. D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】甲同學參加化學競賽初賽,考試分為筆試、口試、實驗三個項目,各單項通過考試的概率依次為、、,筆試、口試、實驗通過考試分別記4分、2分、4分,沒通過的項目記0分,各項成績互不影響.
(Ⅰ)若規(guī)定總分不低于8分即可進入復賽,求甲同學進入復賽的概率;
(Ⅱ)記三個項目中通過考試的個數為,求隨機變量的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】“微信運動”已成為當下熱門的健身方式,小王的微信朋友圈內也有大量好友參與了“微信運動”,他隨機選取了其中的40人(男、女各20人),記錄了他們某一天的走路步數,并將數據整理如下:
(1)若采用樣本估計總體的方式,試估計小王的所有微信好友中每日走路步數超過5000步的概率;
(2)已知某人一天的走路步數超過8000步被系統評定“積極型”,否則為“懈怠型”,根據題意完成下面的列聯表,并據此判斷能否有95%以上的把握認為“評定類型”與“性別”有關?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知線段AB的兩個端點A、B分別在x軸和y軸上滑動,且∣AB∣=2.
(1)求線段AB的中點P的軌跡C的方程;
(2)求過點M(1,2)且和軌跡C相切的直線方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(2017·全國卷Ⅲ文,18)某超市計劃按月訂購一種酸奶,每天進貨量相同,進貨成本每瓶4元,售價每瓶6元,未售出的酸奶降價處理,以每瓶2元的價格當天全部處理完.根據往年銷售經驗,每天需求量與當天最高氣溫(單位:℃)有關.如果最高氣溫不低于25,需求量為500瓶;如果最高氣溫位于區(qū)間[20,25),需求量為300瓶;如果最高氣溫低于20,需求量為200瓶.為了確定六月份的訂購計劃,統計了前三年六月份各天的最高氣溫數據,得下面的頻數分布表:
最高氣溫 | [10,15) | [15,20) | [20,25) | [25,30) | [30,35) | [35,40) |
天數 | 2 | 16 | 36 | 25 | 7 | 4 |
以最高氣溫位于各區(qū)間的頻率估計最高氣溫位于該區(qū)間的概率.
(1)估計六月份這種酸奶一天的需求量不超過300瓶的概率;
(2)設六月份一天銷售這種酸奶的利潤為Y(單位:元).當六月份這種酸奶一天的進貨量為450瓶時,寫出Y的所有可能值,并估計Y大于零的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知a,b為常數,a0,函數.
(1)若a=2,b=1,求在(0,+∞)內的極值;
(2)①若a>0,b>0,求證:在區(qū)間[1,2]上是增函數;
②若,,且在區(qū)間[1,2]上是增函數,求由所有點形成的平面區(qū)域的面積.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com