【題目】甲同學(xué)參加化學(xué)競賽初賽,考試分為筆試、口試、實驗三個項目,各單項通過考試的概率依次為、、,筆試、口試、實驗通過考試分別記4分、2分、4分,沒通過的項目記0分,各項成績互不影響.

(Ⅰ)若規(guī)定總分不低于8分即可進(jìn)入復(fù)賽,求甲同學(xué)進(jìn)入復(fù)賽的概率;

(Ⅱ)記三個項目中通過考試的個數(shù)為,求隨機變量的分布列和數(shù)學(xué)期望.

【答案】(Ⅰ);(Ⅱ)答案見解析.

【解析】

試題分析:()記筆試、口試、實驗獨立通過考試分別為事件,則則事件甲同學(xué)進(jìn)入復(fù)賽的表示為,由互斥,且、、彼此獨立,能求出甲同學(xué)進(jìn)入復(fù)賽的概率;()隨機變量的所有可能取值為0,1,2,3,分別求出相應(yīng)的概率,由此能求出的分布列和數(shù)學(xué)期望.

試題解析:(Ⅰ)記筆試、口試、實驗獨立通過考試分別為事件,

則事件甲同學(xué)進(jìn)入復(fù)賽的表示為.

互斥,且彼此獨立,

.

(Ⅱ)隨機變量的所有可能取值為0,1,2,3.

,

,

,

.

所以,隨機變量的分布列為

數(shù)學(xué)期望.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1為等邊三角形,分別為的中點,的中點,,將沿折起到的位置,使得平面平面,

的中點,如圖2

1)求證:平面

2)求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,以橢圓的短軸為直徑的圓與直線相切.

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)橢圓過右焦點的弦為、過原點的弦為,若,求證:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了在夏季降溫和冬季供暖時減少能源損耗,房屋的屋頂和外墻需要建造隔熱層。某幢建筑物要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬元。該建筑物每年的能源消耗費用C(單位:萬元)與隔熱層厚度x(單位:cm)滿足關(guān)系:Cx=若不建隔熱層,每年能源消耗費用為8萬元。設(shè)fx)為隔熱層建造費用與20年的能源消耗費用之和。

)求k的值及f(x)的表達(dá)式。

)隔熱層修建多厚時,總費用f(x)達(dá)到最小,并求最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有兩個不透明的箱子,每個箱子都裝有4個完全相同的小球,球上分別標(biāo)有數(shù)字1,2,3,4.

(1)甲從其中一個箱子中摸出一個球,乙從另一個箱子摸出一個球,誰摸出的球上標(biāo)的數(shù)字大誰就獲勝(若數(shù)字相同則為平局),求甲獲勝的概率;

(2)摸球方法與(1)同,若規(guī)定:兩人摸到的球上所標(biāo)數(shù)字相同甲獲勝,所標(biāo)數(shù)字不相同則乙獲勝,這樣規(guī)定公平嗎?請說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓的半徑為3,圓心在軸正半軸上,直線與圓相切.

(1)求圓的標(biāo)準(zhǔn)方程;

(2)過點的直線與圓交于不同的兩點,而且滿足求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分12分)

如圖在直三棱柱ABC—A1B1C1中,AC=3BC=4,AB=5,AA1=4,DAB

中點.

(1) 求證: AC⊥BC1

(2) 求證:AC1平面CDB1

(3) 求異面直線AC1B1C所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的值域為,函數(shù).

1)求;

2)求函數(shù)的值域;

3)當(dāng)時,若函數(shù)有零點,求的取值范圍,并討論零點的個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩地相距1000,貨車從甲地勻速行駛到乙地,速度不得超過80,已知貨車每小時的運輸成本(單位:元)由可變成本和固定成本組成,可變成本是速度平方的倍,固定成本為元.

)將全程運輸成本(元)表示為速度)的函數(shù),并指出這個函數(shù)的定義域;

)為了使全程運輸成本最小,貨車應(yīng)以多大的速度行駛?

查看答案和解析>>

同步練習(xí)冊答案