3.cos50°($\sqrt{3}$-tan10°)的值為( 。
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$C.1D.2

分析 通過切化弦兩角和與差的三角函數(shù),以及同角三角函數(shù)基本關(guān)系式、誘導(dǎo)公式化簡求解即可.

解答 解:cos50°($\sqrt{3}$-tan10°)=cos50°($\sqrt{3}$-$\frac{sin10°}{cos10°}$)
=cos50°×$\frac{\sqrt{3}cos10°-sin10°}{cos10°}$
=cos50°×2$\frac{sin(60°-10°)}{cos10°}$
=$\frac{sin100°}{cos10°}$
=1.
故選:C.

點(diǎn)評 本題考查兩角和與差的三角函數(shù),同角三角函數(shù)的基本關(guān)系式的應(yīng)用,考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.若點(diǎn)P在平面區(qū)域$\left\{\begin{array}{l}x-y-2≤0\\ x+2y-5≥0\\ y-2≤0\end{array}\right.$上,則u=2x-y的取值范圍為[0,6].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知向量$\overrightarrow{a}$=(2,tanθ),$\overrightarrow$=(1,-1),且$\overrightarrow{a}$∥$\overrightarrow$,則tan($\frac{π}{4}$+θ)等于( 。
A.2B.-3C.-1D.-$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.某校高三共有900名學(xué)生,高三模擬考之后,為了了解學(xué)生學(xué)習(xí)情況,用分層抽樣方法從中抽出若干學(xué)生此次數(shù)學(xué)成績,按成績分組,制成如下的頻率分布表:
組號第一組第二組第二組第四組
分組[70,80)[80,90)[90,100)[100,110)
頻數(shù)642220
頻率0.060.040.220.20
組號第五組第六組第七組第八組
分組[110,120)[120,130)[130,140)[140,150]
頻數(shù)18a105
頻率b0.150.100.05
(1)若頻數(shù)的總和為c,試求a,b,c的值;
(2)估計該校本次考試的數(shù)學(xué)平均分.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.將圓x2+y2=1上每一點(diǎn)的縱坐標(biāo)不變,橫坐標(biāo)變?yōu)樵瓉淼?\frac{1}{4}$,得曲線C.
(Ⅰ)寫出C的參數(shù)方程;
(Ⅱ)設(shè)直線l:4x+y+1=0與C的交點(diǎn)為P1,P2,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,求過線段P1 P2的中點(diǎn)且與l垂直的直線的極坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知正四棱柱ABCD-A1B1C1D1中,AB=1,CC1=2,點(diǎn)E為CC1的中點(diǎn),則異面直線AC1與BE所成的角等于( 。
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若集合U={1,2,3,4,5,6},A={2,5,6},B={1,3,5},那么(∁UA)∩B=(  )
A.{5}B.{1,3}C.{2,6}D.{1,3,4,5,6}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知點(diǎn)P($\sqrt{3}$,-1),Q(sin2x,cos2x),O為坐標(biāo)原點(diǎn),函數(shù)f(x)=$\overrightarrow{OP}•\overrightarrow{OQ}$.
(1)求函數(shù)f(x)的對稱中心和單調(diào)增區(qū)間;
(2)若A為△ABC的內(nèi)角,a,b,c分別為角A,B,C的對邊,f(A)=2,a=5,求△ABC周長的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.在△ABC 中,a,b,c 分別是內(nèi)角 A,B,C 的對邊,若c=4$\sqrt{2}$,B=45°,△ABC 的面積S=2,則a=1;b=5.

查看答案和解析>>

同步練習(xí)冊答案