20.在△ABC中,角A、B、C所對(duì)的邊分別為a,b,c,且c2=a2+b2-ab,則角C=60°.

分析 由余弦定理可知cosC=$\frac{{a}^{2}+^{2}-{c}^{2}}{2ab}$=$\frac{bc}{2bc}$=$\frac{1}{2}$,即可求得角C.

解答 解:由c2=a2+b2-ab,可知ab=a2+b2-c2,
由余弦定理可知:cosC=$\frac{{a}^{2}+^{2}-{c}^{2}}{2ab}$=$\frac{bc}{2bc}$=$\frac{1}{2}$,
由0<C<180°,
∴C=60°.
故答案為:60°.

點(diǎn)評(píng) 本題考查余弦定理的應(yīng)用,考查計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.若f(x)=1-2x,g[f(x)]=2x+x,則g(-1)的值為( 。
A.1B.3C.-$\frac{1}{2}$D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,若a3+a5=8,則S7=( 。
A.28B.32C.56D.24

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.化簡(jiǎn)sin(α-$\frac{π}{2}$)•tan(π-α)=sinα.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.若雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$的一條漸近線經(jīng)過(guò)點(diǎn)(-3,4),則此雙曲線的離心率為(  )
A.$\frac{5}{3}$B.$\frac{{\sqrt{7}}}{3}$C.$\frac{4}{3}$D.$\frac{5}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.觀察下列各式:a+b=1,a2+b2=3,a3+b3=5,a4+b4=7…,則a10+b10=( 。
A.15B.17C.19D.21

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知正方形ABCD所在平面與正方形ABEF所在平面互相垂直,M為AC上一點(diǎn),N為BF 上一點(diǎn),且AM=FN.
(1)求證:MN∥平面CBE;
(2)求證:MN⊥AB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.在△ABC中,若A=$\frac{π}{6}$,a=$\sqrt{2}$,則$\frac{sinB}$=2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知函數(shù)f(x)=x-alnx,g(x)=-$\frac{1+a}{x}$,(a∈R).
(1)設(shè)函數(shù)h(x)=f(x)-g(x),當(dāng)a>0時(shí)求函數(shù)h(x)的單調(diào)區(qū)間;
(2)若在[1,e](e=2.718…)上存在一點(diǎn)x0,使得f(x0)<g(x0)成立,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案