7.在△ABC中,P為BC中點(diǎn),若$\overrightarrow{AP}$=m$\overrightarrow{AB}$+n$\overrightarrow{AC}$,則m+n=1.

分析 若△ABC中,P為BC中點(diǎn),則$\overrightarrow{BP}$=$\frac{1}{2}$$\overrightarrow{BC}$=$\frac{1}{2}$($\overrightarrow{AC}$-$\overrightarrow{AB}$),再由$\overrightarrow{AP}$=$\overrightarrow{AB}$+$\overrightarrow{BP}$,可得m,n的值.

解答 解:∵△ABC中,P為BC中點(diǎn),
∴$\overrightarrow{BP}$=$\frac{1}{2}$$\overrightarrow{BC}$=$\frac{1}{2}$($\overrightarrow{AC}$-$\overrightarrow{AB}$),
∴$\overrightarrow{AP}$=$\overrightarrow{AB}$+$\overrightarrow{BP}$=$\overrightarrow{AB}$+$\frac{1}{2}$($\overrightarrow{AC}$-$\overrightarrow{AB}$)=$\frac{1}{2}$$\overrightarrow{AB}$+$\frac{1}{2}$$\overrightarrow{AC}$,
∴m=n=$\frac{1}{2}$,
∴m+n=1,
故答案為:1.

點(diǎn)評 本題的知識點(diǎn)是向量在幾何中的應(yīng)用,向量加法和減法的三角形法則,難度中檔.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知函數(shù)f(x)=$\frac{1}{{e}^{|x|}}$•log3($\frac{1}{\sqrt{1+2{x}^{2}}+ax}$)圖象關(guān)于原點(diǎn)對稱.則實(shí)數(shù)a的值構(gòu)成的集合為$±\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,△ABC中,∠BAC的平分線AD交BC于點(diǎn)D,⊙O過點(diǎn)A,且和BC切于點(diǎn)D,和AB,AC分別交于點(diǎn)E、F,設(shè)EF交AD于點(diǎn)G,連接DF.
(1)求證:EF∥BC;
(2)已知DF=2,AG=3,求$\frac{AE}{EB}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知集合U={1,2,3,4},集合A={2,3},則∁UA=( 。
A.{1,2,3,4}B.{1,4}C.{2,3}D.{3,4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知$\overrightarrow m=(a,-2)$,$\overrightarrow n=(1,1-a)$,且$\overrightarrow m$與$\overrightarrow n$方向相反,則實(shí)數(shù)a的值為(  )
A.-1B.$\frac{2}{3}$C.2D.-1或2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=2lnx-x2
(1)求函數(shù)y=f(x)在區(qū)間$[\frac{1}{e},e]$的最值;(e為自然對數(shù)的底數(shù))
(2)如果函數(shù)g(x)=f(x)-ax的圖象與x軸交于兩點(diǎn)A(x1,0),B(x2,0)且0<x1<x2,求證:${g^/}(\frac{{{x_1}+{x_2}}}{2})<0$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知橢圓的方程為$\frac{{y}^{2}}{9}$+$\frac{{x}^{2}}{16}$=1,則此橢圓的離心率為$\frac{\sqrt{7}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知函數(shù)f(x)=4+loga(x+1)的圖象恒過定點(diǎn)A,則點(diǎn)A的坐標(biāo)是( 。
A.(0,4)B.(1,4)C.(2,4)D.(0,5)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.在△ABC中,$3({{{sin}^2}B+{{sin}^2}C-{{sin}^2}A})=2\sqrt{3}sinBsinC$,且△ABC的面積為$\sqrt{6}+\sqrt{2}$,則BC邊上的高的最大值為$\sqrt{3}+1$.

查看答案和解析>>

同步練習(xí)冊答案