20.已知cos($\frac{π}{6}$-α)=$\frac{{\sqrt{3}}}{3}$,則sin($\frac{5π}{6}$-2α)=-$\frac{1}{3}$.

分析 由條件利用誘導公式、二倍角公式,求得sin($\frac{5π}{6}$-2α)=sin[2($\frac{π}{6}$-α)+$\frac{π}{2}$]的值.

解答 解:∵已知$cos(\frac{π}{6}-α)=\frac{{\sqrt{3}}}{3}$,則sin($\frac{5π}{6}$-2α)=sin[2($\frac{π}{6}$-α)+$\frac{π}{2}$]=cos2($\frac{π}{6}$-α)=2cos2($\frac{π}{6}$-α)-1=2•$\frac{1}{3}$-1=-$\frac{1}{3}$,
故答案為:$-\frac{1}{3}$.

點評 本題主要考查誘導公式、二倍角公式的應用,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

10.設命題p:f(x)=$\frac{1}{x-m}$在區(qū)間(-4,+∞)上是減函數(shù);命題q:關于x的不等式x2-(m+1)x+$\frac{m+7}{4}$≤0在(-∞,+∞)上有解.若(¬p)∧q為真,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.集合A={x|-1<x<2},則集合A∩Z的真子集個數(shù)為3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知非空集合A、B,A={x|log${\;}_{\frac{1}{5}}$(x2-2x-3)>x2-2x-9},A⊆B,則集合B可以是( 。
A.(-1,0)∪(4,6)B.(-2,-1)∪(3,4)C.(-3,3)D.(-3,-1)∪(4,6)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.已知函數(shù)f(x)=2sin(2x+$\frac{π}{6}$),當0<x<$\frac{π}{2}$時,方程f(x)=m有兩個不同的實數(shù)根,則實數(shù)m的取值范圍為[1,2).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.函數(shù)y=$\frac{1}{(x-1)^{2}}$的單調減區(qū)間是(1,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.若a>b>0,下列不等式成立的是( 。
A.a2<b2B.a2<abC.$\frac{a}$<1D.$\frac{1}{a}$>$\frac{1}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知變量x,y滿足約束條件$\left\{\begin{array}{l}x+y≤6\\ x-3y≤-2\\ x≥1\end{array}\right.$,則目標函數(shù)z=ax+by(a>0,b>0)的最小值為2,則$\frac{1}{a^2}$+$\frac{1}{b^2}$的最小值為( 。
A.$\frac{1}{2}$B.2C.8D.17

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知正實數(shù)a,b,c為三角形的三邊長,求證:$\frac{c}{a+b}$+$\frac{a}{b+c}$+$\frac{c+a}$>2.

查看答案和解析>>

同步練習冊答案