7.設(shè)函數(shù)f(x)=$\frac{x+m}{x+1}$的反函數(shù)為f-1(x),若f-1(2)=1,則實(shí)數(shù)m=3.

分析 方法一:根據(jù)反函數(shù)的性質(zhì),可得f(1)=2,解得即可.
方法二:先求出f-1(x)=$\frac{m-x}{x-1}$,再代值計(jì)算即可.

解答 解:方法一:∵f-1(2)=1,
∴f(1)=2,
∴$\frac{1+m}{1+1}$=2,
解得m=3,
方法二:∵y=$\frac{x+m}{x+1}$,
則x=$\frac{m-y}{y-1}$,
∴f-1(x)=$\frac{m-x}{x-1}$,
∵f-1(2)=1,
∴$\frac{m-2}{2-1}$=1,
解得m=3,
故答案為:3.

點(diǎn)評(píng) 本小題主要考查反函數(shù)、反函數(shù)的應(yīng)用等基礎(chǔ)知識(shí),考查運(yùn)算求解能力、轉(zhuǎn)化思想.屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.若復(fù)數(shù)z滿足iz=|$\frac{-1+\sqrt{3}i}{1+i}$|+2i(i為虛數(shù)單位),則復(fù)數(shù)z在復(fù)平面內(nèi)所對(duì)應(yīng)的點(diǎn)位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.過(guò)點(diǎn)A(2,1)且斜率為1的直線方程是( 。
A.x-y-1=0B.x-y-3=0C.x+y-3=0D.x+y-1=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.復(fù)數(shù)z=$\frac{1}{1-i}$的模為(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.$\sqrt{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.甲、乙兩人在罰球線投球命中的概率分別為$\frac{1}{2}$與$\frac{2}{5}$.
(1)若甲、乙兩人在罰球線各投球一次,求恰好命中一次的概率;
(2)若甲、乙兩人在罰球線各投球兩次,求這四次投球中至少一次命中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.設(shè)橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),左、右焦點(diǎn)分別是F1、F2且|F1F2|=2$\sqrt{3}$,以F1為圓心,3為半徑的圓與以F2為圓心,1為班級(jí)的圓相交于橢圓C上的點(diǎn)K
(1)求橢圓C的方程;
(2)設(shè)橢圓E:$\frac{{x}^{2}}{4{a}^{2}}$+$\frac{{y}^{2}}{4^{2}}$=1,P為橢圓C上任意一點(diǎn),過(guò)點(diǎn)P的直線y=kx+m交橢圓E于A,B兩點(diǎn),射線PO交橢圓E于點(diǎn)Q
①求$\frac{|OQ|}{|OP|}$的值;
②令$\frac{{m}^{2}}{1+4{k}^{2}}$=t,求△ABQ的面積f(t)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.(1)已知復(fù)數(shù)z=3+bi,(i為虛數(shù)單位,b為正實(shí)數(shù)),且(z-2)2為純虛數(shù),求復(fù)數(shù)z;
(2)已知(3x+$\frac{1}{\sqrt{x}}$)n的展開式中各二項(xiàng)式系數(shù)之和為16,求展開式中x項(xiàng)的系數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知0<θ<π,sinθ+cosθ=$\frac{1}{5}$,則角θ的終邊落在( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.己知函數(shù)f(x)=ax2+bx+1(a>0)
(1)?x∈R,函數(shù)f($\frac{2{x}^{2}+3}{{x}^{2}+1}$)有最大值1,求函數(shù)f($\frac{2{x}^{2}+3}{{x}^{2}+1}$)的單調(diào)區(qū)間;
(2)已知?x0∈R,使|f(x0)|≤$\frac{1}{a}$與|f(x0+$\frac{2}{a}$)|≤$\frac{1}{a}$同時(shí)成立,求b2-4a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案