18.已知△ABC內(nèi)接于⊙O,BE是⊙O的直徑,AD是BC邊上的高.求證:BA•AC=BE•AD.

分析 連結(jié)AE.證明△BEA∽△ACD,可得$\frac{BE}{BA}=\frac{AC}{AD}$,即可證明BA•AC=BE•AD.

解答 證明:連結(jié)AE.
∵BE是⊙O的直徑,
∴∠BAE=90°.                               …(2分)
∴∠BAE=∠ADC.                                               …(4分)
又∵∠BEA=∠ACD,
∴△BEA∽△ACD.                                             …(7分)
∴$\frac{BE}{BA}=\frac{AC}{AD}$,
∴BA•AC=BE•AD.                                …(10分)

點評 本題考查三角形相似的判定與性質(zhì),考查學生分析解決問題的能力,正確證明三角形相似是關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

4.已知拋物線C:y2=4x的焦點為F,過點P(2,0)的直線交拋物線于A,B兩點.
(1)若$\overrightarrow{FA}•\overrightarrow{FB}$=-11,求直線AB的方程;
(2)求△ABF面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.如圖所示,過點P作⊙O的切線PA,A為切點,割線PB交⊙O于點B、C,R為⊙O上的點,且有AC=AR.
(1)證明:∠PAC=∠ACR;
(2)若AB為⊙O的直徑,證明$\frac{PC}{AR}$=$\frac{PA}{AB}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.已知函數(shù)f(x)=$\left\{\begin{array}{l}{log_2}(-x),x<0\\ x-2,x≥0\end{array}\right.$若函數(shù)g(x)=a-|f(x)|有四個零點x1,x2,x3,x4,且x1<x2<x3<x4,則ax1x2+$\frac{{{x_3}+{x_4}}}{a}$的取值范圍是[4,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.已知f′(x)是函數(shù)f(x)(x∈R)的導函數(shù),滿足f′(x)=f(x),且f(0)=2,設函數(shù)g(x)=f(x)-lnf3(x)的一個零點為x0,則以下正確的是( 。
A.x0∈(0,1)B.x0∈(1,2)C.x0∈(2,3)D.x0∈(3,4)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知函數(shù)f(x)=|x+1|+|x-a|,同時滿足f(-2)≤4和f(2)≤4.
(1)求實數(shù)a的值;
(2)記函數(shù)f(x)的最小值為M,若$\frac{1}{m}$+$\frac{2}{n}$=M(m,n∈R*),求m+2n的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.如圖,⊙O是△ABC的外接圓,∠BAC的平分線AD交BC于D,交⊙O于E,連接CO并延長,交AE于G,交AB于F.
(Ⅰ)證明:$\frac{AF}{AB}$=$\frac{FG}{GC}$•$\frac{CD}{BD}$;
(Ⅱ)若AB=3,AC=2,BD=1,求AD的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.用一根長1m的輕質(zhì)細繩將一副質(zhì)量為1kg的畫框?qū)ΨQ懸掛在墻壁上,如果已知繩能承受的最大張力為10N,為使繩不斷裂,畫框上兩個掛釘?shù)拈g距最大為(g取10m/s2)$\frac{\sqrt{3}}{2}$m.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.傾斜角為45o的直線l經(jīng)過y2=4x的焦點F,且與拋物線相交于A、B兩點,則線段|AB|=8.

查看答案和解析>>

同步練習冊答案