已知函數(shù)f(x)=ax3-3x2+1,若f(x)存在唯一的零點(diǎn)x0,且x0>0,則a的取值范圍是( )
A.(2,+∞) B.(-∞,-2)
C.(1,+∞) D.(-∞,-1)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
在實數(shù)集R中定義一種運(yùn)算“*”,對任意a,b∈R,a*b為唯一確定的實數(shù),且具有性質(zhì):
(1)對任意a∈R,a*0=a;
(2)對任意a,b∈R,a*b=ab+(a*0)+(b*0).
關(guān)于函數(shù)f(x)=(ex)*的性質(zhì),有如下說法:①函數(shù)f(x)的最小值為3;②函數(shù)f(x)為偶函數(shù);③函數(shù)f(x)的單調(diào)遞增區(qū)間為(-∞,0].
其中所有正確說法的個數(shù)為( )
A.0 B.1
C.2 D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
甲、乙兩名棋手比賽正在進(jìn)行中,甲必須再勝2盤才最后獲勝,乙必須再勝3盤才最后獲勝,若甲、乙兩人每盤取勝的概率都是,則甲最后獲勝的概率是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
前不久,省社科院發(fā)布了2013年度“城市居民幸福排行榜”,某市成為本年度城市最“幸福城”.隨后,某校學(xué)生會組織部分同學(xué),用“10分制”隨機(jī)調(diào)查“陽光”社區(qū)人們的幸福度.現(xiàn)從調(diào)查人群中隨機(jī)抽取16名,如圖所示的莖葉圖記錄了他們的幸福度分?jǐn)?shù)(以小數(shù)點(diǎn)前的一位數(shù)字為莖,小數(shù)點(diǎn)后的一位數(shù)字為葉):
(1)指出這組數(shù)據(jù)的眾數(shù)和中位數(shù);
(2)若幸福度不低于9.5分,則稱該人的幸福度為“極幸!保髲倪@16人中隨機(jī)選取3人,至多有1人是“極幸!钡母怕;
(3)以這16人的樣本數(shù)據(jù)來估計整個社區(qū)的總體數(shù)據(jù),若從該社區(qū)(人數(shù)很多)任選3人,記ξ表示抽到“極幸!钡娜藬(shù),求ξ的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知函數(shù)f(x)=有三個不同的零點(diǎn),則實數(shù)a的取值范圍是( )
A.(0,3] B.(1+ln 2,3]
C.(1-ln 2,3] D.[-3,3]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
設(shè)等差數(shù)列{an}的前n項和為Sn,已知a1=2,S6=22.
(1)求Sn的表達(dá)式;
(2)若從{an}中抽取一個公比為q的等比數(shù)列{akn},其中k1=1,且k1<k2<…<kn(kn∈N*).
①當(dāng)q取最小值時,求{kn}的通項公式;
②若關(guān)于n(n∈N*)的不等式6Sn>kn+1有解,試求q的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知集合A={x||x-1|<2},B={x|y=lg(x2+x)},設(shè)U=R,則A∩(∁UB)等于( )
A.[3,+∞) B.(-1,0]
C.(3,+∞) D.[-1,0]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
給出下列命題,其中真命題的個數(shù)是( )
①存在x0∈R,使得sin x0+cos x0=2sin成立;
②對于任意的三個平面向量a,b,c,總有(a·b)·c=a·(b·c)成立;
③相關(guān)系數(shù)r(|r|≤1),|r|值越大,變量之間的線性相關(guān)程度越高.
A.0 B.1 C.2 D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
給出下面類比推理命題(其中為有理數(shù)集,為實數(shù)集,為復(fù)數(shù)集)
①“若a,b”類比推出“若a,b”;
②“若,則復(fù)數(shù)”類比推出“若,則”;
③“若” 類比推出“若”;
其中類比結(jié)論正確的個數(shù)是 ( )
A、0 B、1 C、2 D、3
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com