【題目】如圖,在四棱錐中,底面四邊形是菱形,點在線段上,∥平面

1)證明:點為線段中點;

2)已知平面,,點到平面的距離為1,四棱錐的體積為,求

【答案】1)見解析(2

【解析】

1)連結(jié),與相交于點,由線面平行的性質(zhì)定理即可證得,在中,由中點,即可證得結(jié)論;

2平面,,可證得平面平面,由面面垂直的性質(zhì)可證得,由已知可得,根據(jù)體積公式即可求得.

解:(1)連結(jié),與相交于點,連結(jié),則經(jīng)過的平面與平面交線為

因為平面,

所以

因為四邊形是菱形,

所以的中點,

所以中位線,于是為線段中點.

2)因為平面,

所以點到平面的距離等于點到平面的距離等于1

因為平面,

所以平面

所以平面平面,

平面平面.因為

所以,因此

因為,所以四邊形是邊長為2的菱形,面積為,

所以四棱錐的體積為,

,得

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)求的單調(diào)遞增區(qū)間;

2)求證:曲線在區(qū)間上有且只有一條斜率為2的切線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中國農(nóng)業(yè)銀行廣元分行發(fā)行“金穗廣元·劍門關(guān)旅游卡”是以“游廣元、知廣元、愛廣元共享和諧廣元”為主題活動的一項經(jīng)濟(jì)性和公益性相結(jié)合的重大舉措,以最優(yōu)惠的價格惠及廣元戶籍市民、浙江及黑龍江授建省群眾、省內(nèi)援建市市民,凡上述對象均可辦理此卡,本人憑此卡及本人身份證一年內(nèi)(期滿后可重新充值辦理)在廣元市范圍內(nèi)可無限次游覽所有售門票景區(qū)景點,如:劍門關(guān)、朝天明月峽、旺蒼鼓城山—七里峽、青川唐家河、廣元皇澤寺、蒼溪梨博園、昭化古城等,現(xiàn)有浙江及黑龍江援建省群眾甲乙兩人到廣元旅游(同游),第一天他們游覽了劍門關(guān)、朝天明月峽,第二天他們準(zhǔn)備從上面剩下的5個景點中選兩個景點游覽,則第二天游覽青川唐家河的概率是(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形與正三角形的邊長均為2,它們所在平面互相垂直,平面,平面

(1)求證:平面平面

(2)若,求二面角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過拋物線Cx24y的準(zhǔn)線上任意一點P作拋物線的切線PA,PB,切點分別為A,B,則A點到準(zhǔn)線的距離與B點到準(zhǔn)線的距離之和的最小值是(

A.7B.6C.5D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】扶貧幫困是中華民族的傳統(tǒng)美德,某大型企業(yè)為幫扶貧困職工,設(shè)立扶貧幫困基金,采用如下方式進(jìn)行一次募捐:在不透明的箱子中放入大小均相同的白球六個,紅球三個,每位獻(xiàn)愛心的參與者投幣100元有一次摸獎機(jī)會,一次性從箱中摸球三個(摸完球后將球放回),若有一個紅球,獎金20元,兩個紅球獎金40元,三個全為紅球獎金200.

1)求一位獻(xiàn)愛心參與者不能獲獎的概率;

2)若該次募捐有300位獻(xiàn)愛心參與者,求此次募捐所得善款的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】新生兒某疾病要接種三次疫苗免疫(即0、1、6月齡),假設(shè)每次接種之間互不影響,每人每次接種成功的概率相等為了解新生兒該疾病疫苗接種劑量與接種成功之間的關(guān)系,現(xiàn)進(jìn)行了兩種接種方案的臨床試驗:10μg/次劑量組與20μg/次劑量組,試驗結(jié)果如下:

接種成功

接種不成功

總計(人)

10μg/次劑量組

900

100

1000

20μg/次劑量組

973

27

1000

總計(人)

1873

127

2000

1)根據(jù)數(shù)據(jù)說明哪種方案接種效果好?并判斷能否有99.9%的把握認(rèn)為該疾病疫苗接種成功與兩種接種方案有關(guān)?

2)以頻率代替概率,若選用接種效果好的方案,參與該試驗的1000人的成功人數(shù)比此劑量只接種一次的成功人數(shù)平均提高多少人.

參考公式:,其中

參考附表:

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)是定義在R上的奇函數(shù),當(dāng)時,,則下列命題正確的是(

A.當(dāng)時,

B.函數(shù)3個零點

C.的解集為

D.,都有

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)求的單調(diào)區(qū)間;

2)若不等式時恒成立,求實數(shù)的取值范圍;

查看答案和解析>>

同步練習(xí)冊答案