【題目】位于濰坊濱海的“濱海之眼”摩天輪是世界上最高的無軸摩天輪,該摩天輪的直徑均為124米,中間沒有任何支撐,摩天輪順時(shí)針勻速旋轉(zhuǎn)一圈需要30分鐘,當(dāng)乘客乘坐摩天輪到達(dá)最高點(diǎn)時(shí),距離地面145米,可以俯瞰白浪河全景,圖中與地面垂直,垂足為點(diǎn),某乘客從處進(jìn)入處的觀景艙,順時(shí)針轉(zhuǎn)動(dòng)分鐘后,第1次到達(dá)點(diǎn),此時(shí)點(diǎn)與地面的距離為114米,則( )

A. 16分鐘B. 18分鐘C. 20分鐘D. 22分鐘

【答案】C

【解析】

根據(jù)摩天輪的直徑和所給線段,求得OD的值;再作,。根據(jù)OEOB的長(zhǎng)度,求得的度數(shù),即可得的度數(shù),進(jìn)而根據(jù)順時(shí)針旋轉(zhuǎn)即可求得經(jīng)過的時(shí)間t。

根據(jù)題意,作,,如下圖所示:

直徑為,則,

所以

所以 ,即

所以

因?yàn)槟μ燧嗧槙r(shí)針勻速旋轉(zhuǎn)一圈需要30分鐘

所以從AB所需時(shí)間為分鐘

所以選C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在某市組織的一次數(shù)學(xué)競(jìng)賽中全體參賽學(xué)生的成績(jī)近似服從正態(tài)分布N(60,100),已知成績(jī)?cè)?0分以上的學(xué)生有13人.

(1)求此次參加競(jìng)賽的學(xué)生總數(shù)共有多少人?

(2)若計(jì)劃獎(jiǎng)勵(lì)競(jìng)賽成績(jī)排在前228名的學(xué)生,問受獎(jiǎng)學(xué)生的分?jǐn)?shù)線是多少?

(參考數(shù)據(jù):若,則;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x2lnx.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)證明:對(duì)任意的t>0,存在唯一的s,使t=f(s).
(3)設(shè)(2)中所確定的s關(guān)于t的函數(shù)為s=g(t),證明:當(dāng)t>e2時(shí),有

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P-ABCD中,AB//CD,且

(1)證明:平面PAB⊥平面PAD

(2)若PA=PD=AB=DC, ,且四棱錐P-ABCD的體積為,求該四棱錐的側(cè)面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)).以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.直線交曲線,兩點(diǎn).

(Ⅰ)寫出直線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;

(Ⅱ)設(shè)點(diǎn)的直角坐標(biāo)為,求點(diǎn),兩點(diǎn)的距離之積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于直線對(duì)稱,且圓心在軸上.

(1)求的標(biāo)準(zhǔn)方程;

(2)已經(jīng)動(dòng)點(diǎn)在直線上,過點(diǎn)的兩條切線、,切點(diǎn)分別為.

①記四邊形的面積為,求的最小值;

②證明直線恒過定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知四邊形BCDE為直角梯形,,,且,ABE的中點(diǎn)沿AD折到位置如圖,連結(jié)PC,PB構(gòu)成一個(gè)四棱錐

求證

平面ABCD

求二面角的大。

在棱PC上存在點(diǎn)M,滿足,使得直線AM與平面PBC所成的角為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司為確定下一年度投入某種產(chǎn)品的宣傳費(fèi),需了解年宣傳費(fèi)(單位:千元)對(duì)年銷售量(單位:)和年利潤(rùn)(單位:千元)的影響,對(duì)近13年的宣傳費(fèi)和年銷售量 數(shù)據(jù)作了初步處理,得到散點(diǎn)圖及一些統(tǒng)計(jì)量的值.

由散點(diǎn)圖知,按建立關(guān)于的回歸方程是合理的.令,則,經(jīng)計(jì)算得如下數(shù)據(jù):

10.15

109.94

0.16

-2.10

0.21

21.22

最小二乘法求線性回歸方程系數(shù)公式

Ⅰ)根據(jù)以上信息,建立關(guān)于的回歸方程;

Ⅱ)已知這種產(chǎn)品的年利潤(rùn)的關(guān)系為.根據(jù)(1)的結(jié)果,求當(dāng)年宣傳費(fèi)時(shí),年利潤(rùn)的預(yù)報(bào)值是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《張邱建算經(jīng)》是中國(guó)古代數(shù)學(xué)史上的杰作,該書中有首古民謠記載了一數(shù)列問題:“南山一棵竹,竹尾風(fēng)割斷,剩下三十節(jié),一節(jié)一個(gè)圈,頭節(jié)高五寸,頭圈一尺三,逐節(jié)多三分,逐圈少分三,一蟻往上爬,遇圈則繞圈。爬到竹子頂,行程是多遠(yuǎn)?”(注釋:①第節(jié)的高度為0.5尺;②第一圈的周長(zhǎng)為1.3尺;③每節(jié)比其下面的一節(jié)多0.03尺;④每圈周長(zhǎng)比其下面的一圈少0.013尺),問:此民謠提出的問題的答案是( )

A. 61.395尺B. 61.905尺C. 72.705尺D. 73.995尺

查看答案和解析>>

同步練習(xí)冊(cè)答案