18.已知兩個(gè)單位向量$\overrightarrow a,\overrightarrow b$的夾角為60°,$\overrightarrow c=t\overrightarrow a+\overrightarrow b$,$\overrightarrow d=\overrightarrow a-t\overrightarrow b$,若$\overrightarrow c⊥\overrightarrow d$,則正實(shí)數(shù)t=1.

分析 根據(jù)向量垂直得出$\overrightarrow{c}•\overrightarrowoqm7pkr=0$,列出方程解出t.

解答 解:$\overrightarrow{a}•\overrightarrow=cos60°=\frac{1}{2}$.
∵$\overrightarrow{c}⊥\overrightarrowprjoyux$,
∴$\overrightarrow{c}•\overrightarrowa2lccjf=0$,即(t$\overrightarrow{a}+\overrightarrow$)($\overrightarrow{a}-t\overrightarrow$)=0,
∴t${\overrightarrow{a}}^{2}$-t${\overrightarrow}^{2}$+(1-t2)$\overrightarrow{a}•\overrightarrow$=0,即-$\frac{1}{2}$t2+$\frac{1}{2}$=0.
∵t>0,
∴t=1.
故答案為1.

點(diǎn)評(píng) 本題考查了平面向量垂直與數(shù)量積的關(guān)系,數(shù)量積的運(yùn)算,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.計(jì)算:|$\frac{3-4i}{(1-i)^{2}(2+3i)}$|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知在數(shù)列{an}中,a1=$\frac{4}{5}$,an+1=$\left\{\begin{array}{l}{2{a}_{n},{a}_{n}∈[0,\frac{1}{2}]}\\{2{a}_{n}-1,{a}_{n}∈(\frac{1}{2},1]}\end{array}\right.$,則a2015等于(  )
A.$\frac{4}{5}$B.$\frac{3}{5}$C.$\frac{2}{5}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖,已知A(-4a,0)(a>0),B、C兩點(diǎn)分別在y軸和x軸上運(yùn)動(dòng),并且滿足$\overrightarrow{AB}$•$\overrightarrow{BQ}$=0,$\overrightarrow{BC}$=$\frac{1}{3}$$\overrightarrow{CQ}$.
(1)求動(dòng)點(diǎn)Q的軌跡方程;
(2)設(shè)過點(diǎn)A的直線與點(diǎn)Q的軌跡交于E、F兩點(diǎn),A′(4a,0),求直線A′E、A′F的斜率之和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知函數(shù)y=f(x)的圖象為如圖所示的折線ABC,則$\int_{-1}^1{[(x+1)f(x)]}$dx=( 。
A.2B.-2C.1D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知向量$\overrightarrow a=(-4,3)$,$\overrightarrow b=(5,6)$,則3|$\overrightarrow a{|^2}$$-4\overrightarrow a•\overrightarrow b$=( 。
A.83B.63C.57D.23

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知a,y滿足$\left\{\begin{array}{l}{x-2≤0}\\{x-2y≤0}\\{x+2y-8≤0}\end{array}\right.$,則目標(biāo)函數(shù)z=2x+y的最大值為( 。
A.6B.7C.8D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知△ABC中,AB=4,AC=3,∠CAB=90°,則$\overrightarrow{BA}•\overrightarrow{BC}$=16.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.設(shè)x,y滿足約束條件$\left\{\begin{array}{l}1≤x≤3\\-1≤x-y≤0\end{array}\right.$,則z=$\frac{y}{x}$的最大值為2.

查看答案和解析>>

同步練習(xí)冊(cè)答案