若函數(shù)f(x)是R上的奇函數(shù),則f(-2012)+f(-2011)+f(0)+f(2011)+f(2012)=________.

0
分析:根據(jù)奇函數(shù)的定義,可得函數(shù)f(x)是R上的奇函數(shù),f(-x)=-f(x)恒成立,即f(-x)+f(x)=0恒成立,代入可得答案.
解答:∵函數(shù)f(x)是R上的奇函數(shù),
∴f(-x)=-f(x)恒成立
即f(-x)+f(x)=0
故f(-2012)+f(-2011)+f(0)+f(2011)+f(2012)=0+0+0=0
故答案為:0
點評:本題考查的知識點是函數(shù)的奇偶性,其中根據(jù)函數(shù)奇偶性的性質(zhì)得到函數(shù)f(x)是R上的奇函數(shù),f(-x)=-f(x)恒成立,即f(-x)+f(x)=0恒成立,是解答的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
mx3
3
+ax2+(1-b2)x
,m,a,b∈R.
(Ⅰ)求函數(shù)f(x)的導函數(shù)f′(x);
(Ⅱ)當m=1時,若函數(shù)f(x)是R上的增函數(shù),求z=a+b的最小值;
(Ⅲ)當a=1,b=
2
時,函數(shù)f(x)在(2,+∞)上存在單調(diào)遞增區(qū)間,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
ax+a-3
ax+a
(a>0且a≠1).
(Ⅰ)若函數(shù)f(x)是R上的奇函數(shù),求實數(shù)a的值;
(Ⅱ)當1≤x≤2時,請回答以下問題:
     (i)判斷函數(shù)f(x)的單調(diào)性(不必證明);
     (ii)若函數(shù)f(x)的最大值為
3
4
,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x3-ax2+3x,a∈R
(1)若x=3是f(x)的極值點,求f(x)的極值;
(2)若函數(shù)f(x)是R上的單調(diào)遞增函數(shù),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=log2(4x+1)-ax.若函數(shù)f(x)是R上的偶函數(shù),求:實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

關于函數(shù),給出下列命題:
①若函數(shù)f(x)是R上周期為3的偶函數(shù),且滿足f(1)=1,則f(2)-f(-4)=0;
②若函數(shù)f(x)滿足f(x+1)f(x)=2 013,則f(x)是周期函數(shù);
③若函數(shù)g(x)=
x-1,x>0
f(x),x<0
是偶函數(shù),則f(x)=x+1;
④函數(shù)y=
log
1
3
|2x-3|
的定義域為(
3
2
,+∞).
其中正確的命題是
 
.(寫出所有正確命題的序號)

查看答案和解析>>

同步練習冊答案