20.為了解某班學(xué)生喜愛打籃球是否與性別有關(guān),對本班50人進(jìn)行了問卷調(diào)查得到了如下的列聯(lián)表:
喜愛打籃球不喜愛打籃球合計
男生15520       
女生102030
合計252550
已知在全部50人中隨機抽取1人抽到喜愛打籃球的學(xué)生的概率為$\frac{1}{2}$.
(1)請將上面的列聯(lián)表補充完整;
(2)是否有99%的把握認(rèn)為喜愛打籃球與性別有關(guān)?說明你的理由.

分析 (1)利用已知條件直接上面的列聯(lián)表補充完整.
(2)求出K2,然后判斷是否有99%的把握認(rèn)為喜愛打籃球與性別.

解答 (12分)
解:(1)因為在全部50人中隨機抽取1人抽到喜愛打籃球的學(xué)生的概率為$\frac{1}{2}$,所以喜愛打籃球的總?cè)藬?shù)為$50×\frac{1}{2}=25$人,所以列聯(lián)表補充如下:

 喜愛打籃球不喜愛打籃球合計
男生15520
女生102030
合計252550
…(4分)
(2)根據(jù)列聯(lián)表可得K2=$\frac{50×(20×15-10×5)^{2}}{30×20×25×15}$≈8.333
因為K2=8.333>6.635…(10分)
∴有99%以上的把握認(rèn)為喜愛打籃球與性別有關(guān).…(12分)

點評 本題考查聯(lián)列表以及獨立檢驗的應(yīng)用,考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知隨機變量ξ服從正態(tài)分布N(μ,16),且P(ξ<-2)+P(ξ≤6)=1,則μ=( 。
A.-4B.4C.-2D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.銳角△ABC中,角A,B,C的對邊分別是a,b,c,若tanC=2,則$\frac{sinA}{sinB}$的取值范圍是(  )
A.($\frac{{\sqrt{2}}}{2},\sqrt{2}$)B.($\frac{{\sqrt{3}}}{3},\sqrt{3}$)C.(0,$\sqrt{5}$)D.($\frac{1}{2},2$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.命題“?x∈(1,+∞),x3>$\sqrt{x}$”的否定是( 。
A.?x0∈(1,+∞),x03$≤\sqrt{{x}_{0}}$B.?x∈(1,+∞),x3$≤\sqrt{x}$
C.?x0∈(-∞,1],x03≤$\sqrt{{x}_{0}}$D.?x∈(-∞,1],x3≤$\sqrt{x}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知變量x與y正相關(guān),且由觀測數(shù)據(jù)算得樣本平均數(shù)$\overline{x}$=2,$\overrightarrow{y}$=3,則由該觀測的數(shù)據(jù)算得的線性回歸方程可能是(  )
A.$\widehat{y}$=0.4x+2.1B.$\widehat{y}$=2x-1C.$\widehat{y}$=-2x+1D.$\widehat{y}$=0.4x+2.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.畫出程序框圖,用二分法求方程l.3x3-26.013x2+0.975x-19.50975=0在(20,21)之間的近似根(精確度為0.005).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.給出下列說法:
①圓的漸開線的參數(shù)方程不能轉(zhuǎn)化為普通方程;
②圓的漸開線也可以轉(zhuǎn)化為普通方程,但是轉(zhuǎn)化后的普通方程比較麻煩,且不容易看出坐標(biāo)之間的關(guān)系,所以常使用參數(shù)方程研究圓的漸開線問題;
③在求圓的擺線和漸開線方程時,如果建立的坐標(biāo)系原點和坐標(biāo)軸選取不同,可能會得到不同的參數(shù)方程;
④圓的漸開線和x軸一定有交點而且是唯一的交點.
其中正確的說法有(  )
A.①③B.②④C.②③D.①③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.設(shè)數(shù)列{an}的前n項和為Sn,且a1=1,an+1=2Sn+3,則S5=201.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.某企業(yè)準(zhǔn)備投入適當(dāng)?shù)膹V告費對產(chǎn)品進(jìn)行促銷,在一年內(nèi)預(yù)計銷售量Q(萬件)與廣告費x(萬元)之間的函數(shù)關(guān)系為Q=$\frac{3x-2}{x}$(x>1),已知生產(chǎn)該產(chǎn)品的年固定投入為3萬元,每生產(chǎn)1萬件該產(chǎn)品另需再投入32萬元,若每件銷售價為“年平均每件生產(chǎn)成本(生產(chǎn)成本不含廣告費)的150%”與“年平均每件所占廣告費的50%”之和.
(1)試將年利潤W(萬元)表示為年廣告費x(萬元)的函數(shù);(年利潤=銷售收入-成本)
(2)當(dāng)年廣告費為多少萬元時,企業(yè)的年利潤最大?最大年利潤為多少萬元?

查看答案和解析>>

同步練習(xí)冊答案