7.復(fù)數(shù)z滿(mǎn)足iz=1-2i(i為虛數(shù)單位),則z的虛部為( 。
A.-1B.1C.-2D.2

分析 直接利用復(fù)數(shù)的除法運(yùn)算法則化簡(jiǎn)求解即可.

解答 解:復(fù)數(shù)z滿(mǎn)足iz=1-2i(i為虛數(shù)單位),
可得z=$\frac{1-2i}{i}$=$\frac{(1-2i)i}{i•i}$=-2-i.
則z的虛部為:-1.
故選:A.

點(diǎn)評(píng) 本題考查復(fù)數(shù)的基本概念,復(fù)數(shù)的代數(shù)形式混合運(yùn)算,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.在5升水中有一個(gè)病毒,現(xiàn)從中隨機(jī)地取出1升水,含有病毒的概率是多大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知實(shí)數(shù)x,y滿(mǎn)足不等式組$\left\{\begin{array}{l}y≥x\\ x+y-6≤0\\ 2x-y-2≥0\end{array}$,且z=2x+y的最小值為m,最大值為n,則$\int_m^n$($\frac{1}{x}$+$\frac{ln2}{3}$)dx=( 。
A.ln3B.2ln2C.2ln3D.ln6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.點(diǎn)P(3,-2,4)關(guān)于平面yOz的對(duì)稱(chēng)點(diǎn)Q的坐標(biāo)為(  )
A.(-3,-2,4)B.(3,2,-4)C.(3,2,4)D.(-3,-2,-4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知A(2,0),B(0,2),直線(xiàn)1:kx-y-k-1=0與線(xiàn)段AB有公共點(diǎn),則l的斜率k的范圍是( 。
A.(-∞,-3]∪[1,+∞)B.[-3,1]C.[1,+∞)D.(-∞,-3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.函數(shù)y=$\frac{x-1}{2x+3}$的值域是(-∞,$\frac{1}{2}$)∪($\frac{1}{2}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.圓x2+y2-(4m+2)x-2my+4m2+4m+1=0的圓心在直線(xiàn)x+y-4=0上,那么圓的面積為( 。
A.B.πC.D.由m的值而定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的焦距為2$\sqrt{3}$,且過(guò)點(diǎn)$(1,\frac{{\sqrt{3}}}{2})$.(1)求橢圓C的方程;
(2)設(shè)橢圓C的長(zhǎng)軸在左右端點(diǎn)分別為A、B,P為直線(xiàn):x=-2任一點(diǎn),過(guò)P作橢圓C的切線(xiàn)l,切點(diǎn)為C,CD⊥AB.
①求證:PB平分線(xiàn)段CD;
②求△PBC面積的最大值,并求此時(shí)C點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.己知三棱錐的三視圖如圖所示,其主視圖、側(cè)視圖、俯視圖的面積分別為1,$\frac{3}{2}$,3,則該三棱錐的外接球體積為(  )
A.$\frac{28\sqrt{14}}{3}$πB.$\frac{56\sqrt{14}}{3}$πC.$\frac{7\sqrt{14}}{3}$πD.$\frac{7\sqrt{14}}{6}$

查看答案和解析>>

同步練習(xí)冊(cè)答案