5.已知f(x)=$\sqrt{3}$sinxcosx+3sin2x-$\frac{3}{2}$.
(1)求f(x)的最小正周期;
(2)求y=f(x)的單調(diào)增區(qū)間.

分析 (1)使用二倍角公式和差角公式化簡(jiǎn)f(x),利用三角函數(shù)的周期公式計(jì)算周期;
(2)根據(jù)正弦函數(shù)的單調(diào)區(qū)間列出不等式解出即可.

解答 解:(1)f(x)=$\frac{\sqrt{3}}{2}$sin2x+$\frac{3}{2}$(1-cos2x)-$\frac{3}{2}$=$\frac{\sqrt{3}}{2}$sin2x-$\frac{3}{2}$cos2x=$\sqrt{3}$sin(2x-$\frac{π}{3}$).
∴f(x)的最小正周期T=$\frac{2π}{2}$=π.
(2)令2kπ-$\frac{π}{2}$≤2x-$\frac{π}{3}$≤2kπ+$\frac{π}{2}$,k∈Z,
解得:kπ-$\frac{π}{12}$≤x≤kπ+$\frac{5π}{12}$,k∈Z.
∴f(x)的單調(diào)遞增區(qū)間為[kπ-$\frac{π}{12}$,kπ+$\frac{5π}{12}$],k∈Z.

點(diǎn)評(píng) 本題考查了三角函數(shù)的恒等變換,正弦函數(shù)的性質(zhì),屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知函數(shù)f(x)=|2x-1|+|x-2a|,若?x∈[1,2],f(x)≤4,則實(shí)a的取值范圍是(  )
A.($\frac{1}{4}$,$\frac{3}{2}$]B.[$\frac{1}{2}$,$\frac{3}{2}$]C.[1,$\frac{3}{2}$]D.[$\frac{1}{2}$,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.在極坐標(biāo)系中,與點(diǎn)(3,-$\frac{π}{3}$)關(guān)于極軸所在直線對(duì)稱的點(diǎn)的極坐標(biāo)是(  )
A.(3,$\frac{2π}{3}$)B.(3,$\frac{π}{3}$)C.(3,$\frac{4π}{3}$)D.(3,$\frac{5π}{6}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.目前,在“互聯(lián)網(wǎng)+”和“大數(shù)據(jù)”浪潮的推動(dòng)下,在線教育平臺(tái)如雨后春筍般蓬勃發(fā)展,與此同時(shí)好多學(xué)生家長(zhǎng)和相關(guān)專家對(duì)在線教學(xué)也產(chǎn)生了質(zhì)疑,主要原因就是在線上教學(xué),學(xué)生是否能認(rèn)真聽講,在這種情況下,我市教育主管部門在我市各中小學(xué)采用分層抽樣的方式抽出15周歲以下和15周歲以上各200人進(jìn)行調(diào)查研究,其中15周歲以下的能認(rèn)真聽講的150人,不能做到認(rèn)真聽講的50人,15周歲以上的170人能認(rèn)真聽講,不能做到認(rèn)真聽講的30人,根據(jù)以上數(shù)據(jù)完成下列各題:
(1)完成下列2×2列聯(lián)表
不認(rèn)真聽講能認(rèn)真聽講總計(jì)
15周歲以下
15周歲以上
總計(jì)
(2)請(qǐng)說明是否有97.5%以上的把握認(rèn)為能否認(rèn)真聽見與年齡有關(guān)?
(3)現(xiàn)用分層抽樣的方法,從15周歲以下的人種抽取8人,在這8人中任取兩人進(jìn)行座談,求抽到的人中至少有一人能認(rèn)真聽講的概率.
參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,(n=a+b+c+d)

P(K2≥k00.050.0250.0100.0050.001
k03.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.把函數(shù)f(x)=3x2+2(a-1)x+a2,x∈[-1,1]的最小值記為g(a).
(1)寫出g(a)的解析式;
(2)若f(x)的最小值為13,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)集合P1={x|x2+ax+1>0},P2={x|x2+ax+2>0},Q1={x|x2+x+b>0},Q2={x|x2+2x+b>0},其中a,b∈R,下列說法正確的是( 。
A.對(duì)任意a,P1是P2的子集,對(duì)任意b,Q1不是Q2的子集
B.對(duì)任意a,P1是P2的子集,存在b,使得Q1是Q2的子集
C.存在a,P1不是P2的子集,對(duì)任意b,Q1不是Q2的子集
D.存在a,P1不是P2的子集,存在b,使得Q1是Q2的子集

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.棱長(zhǎng)為a的正四面體的四個(gè)頂點(diǎn)都在同一個(gè)球面上,若過該球球心的一個(gè)截面如圖所示,并且圖中三角形(正四面體的截面)的面積是3$\sqrt{2}$,則a等于( 。
A.2$\sqrt{2}$B.$\sqrt{2}$C.2$\sqrt{3}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.將函數(shù)f(x)=sin2x的圖象向右平移$\frac{π}{4}$個(gè)單位長(zhǎng)度后得到函數(shù)g(x)的圖象,則下列說法正確的是( 。
A.g(x)在(0,$\frac{π}{4}$)上單調(diào)遞增,且為奇函數(shù)
B.g(x)的最大值為1,其圖象關(guān)于直線x=$\frac{π}{2}$對(duì)稱
C.g(x)在(-$\frac{3π}{8}$,$\frac{π}{8}$)上單調(diào)遞增,且為偶函數(shù)
D.g(x)的周期為π,其圖象關(guān)于點(diǎn)($\frac{3π}{8}$,0)對(duì)稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=$\frac{1}{2}$x2+alnx
(1)若a=-1,求函數(shù)f(x)的極值,并指出極大值還是極小值;
(2)若a=1,求函數(shù)f(x)在[1,e]上的最值.

查看答案和解析>>

同步練習(xí)冊(cè)答案