若(2-3x)5=a0+a1x+a2x2+a3x3+a4x4+a5x5,則|a0|+|a1|+|a2|+|a3|+|a4|+|a5|等于( 。
A、55
B、-1
C、25
D、-25
考點:二項式定理的應(yīng)用
專題:二項式定理
分析:由題意可得|a0|+|a1|+|a2|+|a3|+|a4|+|a5|即(2+3x)5的展開式的各項系數(shù)和,令x=1,可得(2+3x)5的展開式的各項系數(shù)和.
解答: 解:由于(2-3x)5=a0+a1x+a2x2+a3x3+a4x4+a5x5,則|a0|+|a1|+|a2|+|a3|+|a4|+|a5|即(2+3x)5的展開式的各項系數(shù)和,
令x=1,可得(2+3x)5的展開式的各項系數(shù)和為55,
故選:A.
點評:本題主要考查二項式定理的應(yīng)用,是給變量賦值的問題,關(guān)鍵是根據(jù)要求的結(jié)果,選擇合適的數(shù)值代入,體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是定義在R上的奇函數(shù),且當(dāng)x∈(0,+∞)時,f(x)=x2+2x,若f(2-a2)>f(a),則實數(shù)α的取值范圍
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求下列函數(shù)的值域
(1)y=2x+4
1-x
;
(2)y=6-
-x2-6x-5

(3)y=
4
x-1
(x<0或2<x<5).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=sinx+
3
cosx+1.
(1)求函數(shù)f(x)在[0,
π
2
]的最大值與最小值;
(2)若實數(shù)a,b,c使得af(x)+bf(x-c)=1對任意x∈R恒成立,求
bcosc
a
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
m
=(cos
x
2
,-1),
n
=(
3
sin
x
2
,cos2
x
2
)
,設(shè)函數(shù)f(x)=
m
n

(Ⅰ)求f(x)在區(qū)間[0,π]上的零點;
(Ⅱ)在△ABC中,角A、B、C的對邊分別是a,b,c,且滿足b2=ac,求f(B)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2-
a
x
a-1
在[2,+∞)上單調(diào)遞增,則實數(shù)a的取值范圍是( 。
A、a<0或a>1
B、(0,1)
C、a<0或1<a≤4
D、0<a<1或1<a≤4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于以下說法:
(1)命題“已知x,y∈R”,若x≠2或y≠3,則“x+y≠5”是真命題;
(2)設(shè)f(x)的導(dǎo)函數(shù)為f′(x),若f′(x0)=0,則x0是函數(shù)f(x)的極值點;
(3)對于函數(shù)f(x),g(x),f(x)≥g(x)恒成立的一個充分不必要的條件是f(x)min≥g(x)max;
(4)若定義域為R的函數(shù)y=f(x),滿足f(x)+f(4-x)=2,則其圖象關(guān)于點(2,1)對稱.
其中正確的說法序號是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}的前n項和為Sn,an是Sn和1的等差中項,等差數(shù)列{bn}滿足b1+S4=0,b9=a1
(1)求數(shù)列{an},{bn}的通項公式;
(2)若cn=
1
(bn+16)(bn+18)
,求數(shù)列{cn}的前n項和Wn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出四個命題:
(1)若sin2A=sin2B,則△ABC為等腰三角形;
(2)若sinA=cosB,則△ABC為直角三角形;
(3)若cos(A-B)cos(B-C)cos(C-A)=1,則△ABC為正三角形.
以上正確命題的個數(shù)是( 。
A、0B、1C、2D、3

查看答案和解析>>

同步練習(xí)冊答案