已知橢圓的離心率為,直線與以原點為圓心、橢圓的短半軸長為半徑的圓相切.
(1)求橢圓的方程;
(2)如圖,、、是橢圓的頂點,是橢圓上除頂點外的任意點,直線交軸于點,直線交于點,設(shè)的斜率為,的斜率為,求證:為定值.
(1)橢圓的方程為;(2)詳見解析.
解析試題分析:(1)先根據(jù)題中條件求出、、,進(jìn)而可以求出橢圓的方程;(2)先由直線的方程與橢圓的方程聯(lián)立求出點的坐標(biāo),然后由、、三點共線,利用平面向量共線進(jìn)行等價轉(zhuǎn)化,求出點的坐標(biāo),于是得到直線的斜率,最終證明為定值.
試題解析:(1)由直線與圓得,
由,得,所以,
所以橢圓的方程為;
(2)因為,不為橢圓定點,即的方程為,①②
將①代入,解得,
又直線的方程為, ②
由、、三點共線可得,
所以的斜率為,則(定值).
考點:1.橢圓的方程;2.直線與橢圓的公共點的求解;3.直線的斜率;4.三點共線
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系xOy中,點B與點A(-1,1)關(guān)于原點O對稱,P是動點,且直線AP與BP的斜率之積等于.
(1)求動點P的軌跡方程;
(2)設(shè)直線AP和BP分別與直線x=3交于點M,N,問:是否存在點P使得△PAB與△PMN的面積相等?若存在,求出點P的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)橢圓:的左、右焦點分別是、,下頂點為,線段的中點為(為坐標(biāo)原點),如圖.若拋物線:與軸的交點為,且經(jīng)過、兩點.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè),為拋物線上的一動點,過點作拋物線的切線交橢圓于、兩點,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)雙曲線以橢圓的兩個焦點為焦點,且雙曲線的一條漸近線是,
(1)求雙曲線的方程;
(2)若直線與雙曲線交于不同兩點,且都在以為圓心的圓上,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓C的中心在原點,焦點F在軸上,離心率,點在橢圓C上.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若斜率為的直線交橢圓與、兩點,且、、成等差數(shù)列,點M(1,1),求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的一個頂點為,焦點在軸上,若右焦點到直線的距離為3.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)直線與橢圓相交于不同的兩點、,當(dāng)時,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
以點F1(-1,0),F(xiàn)2(1,0)為焦點的橢圓C經(jīng)過點(1,)。
(I)求橢圓C的方程;
(II)過P點分別以為斜率的直線分別交橢圓C于A,B,M,N,求證: 使得
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)已知圓,圓,動圓與圓外切并且與圓內(nèi)切,圓心的軌跡為曲線。
(Ⅰ)求的方程;
(Ⅱ)是與圓,圓都相切的一條直線,與曲線交于,兩點,當(dāng)圓的半徑最長是,求。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知動點到定點和的距離之和為.
(Ⅰ)求動點軌跡的方程;
(Ⅱ)設(shè),過點作直線,交橢圓異于的兩點,直線的斜率分別為,證明:為定值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com