設(shè)橢圓的左、右焦點(diǎn)分別是、,下頂點(diǎn)為,線段的中點(diǎn)為為坐標(biāo)原點(diǎn)),如圖.若拋物線軸的交點(diǎn)為,且經(jīng)過(guò)兩點(diǎn).

(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè),為拋物線上的一動(dòng)點(diǎn),過(guò)點(diǎn)作拋物線的切線交橢圓、兩點(diǎn),求面積的最大值.

(Ⅰ);(Ⅱ)的面積的最大值為

解析試題分析:(Ⅰ)求橢圓的方程,本題解題的關(guān)鍵是利用拋物線的方程求出橢圓方程中參數(shù)的值,拋物線軸的交點(diǎn)為,且經(jīng)過(guò)、兩點(diǎn),求出、、兩點(diǎn)點(diǎn)的坐標(biāo),即可求出橢圓的半長(zhǎng)軸與半焦距,再求出,就能寫(xiě)出橢圓方程;(Ⅱ)設(shè),為拋物線上的一動(dòng)點(diǎn),過(guò)點(diǎn)作拋物線的切線交橢圓、兩點(diǎn),求面積的最大值,利用拋物線線上的點(diǎn)的切線方程與圓聯(lián)立利用弦長(zhǎng)公式與點(diǎn)到直線的距離公式分別求出三角形的底邊長(zhǎng)度與高,表示出△MPQ的面積利用函數(shù)的知識(shí)求出最值,設(shè)),表示出過(guò)點(diǎn)的拋物線的切線方程,與橢圓的方程聯(lián)立,利用弦長(zhǎng)公式表示出線段的長(zhǎng)度,再求出點(diǎn)到直線的距離為,表示出面積,由于其是參數(shù)的函數(shù),利用函數(shù)的知識(shí)求出其最值即可得到,的面積的最大值.
試題解析:(Ⅰ)由題意可知B(0, 1),則A(0, 2),故b=2.    2分
令y=0得,則F1( 1,0),F(xiàn)2(1,0),故c =1.    4分

所以.于是橢圓C1的方程為:.    6分
(Ⅱ)設(shè)N(),由于知直線PQ的方程為:
. 即.    7
代入橢圓方程整理得:,
=,
 , ,    9分

.    10分
設(shè)點(diǎn)M到直線PQ的距離為d,則
所以,的面積S
     12分
當(dāng)時(shí)取到“=”,經(jīng)檢驗(yàn)此時(shí),滿足題意.
綜上可知,的面積的最大值為.    13分
考點(diǎn):圓錐曲線的綜合,橢圓的標(biāo)準(zhǔn)方程.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知點(diǎn),是常數(shù)),且動(dòng)點(diǎn)軸的距離比到點(diǎn)的距離小.
(1)求動(dòng)點(diǎn)的軌跡的方程;
(2)(i)已知點(diǎn),若曲線上存在不同兩點(diǎn)滿足,求實(shí)數(shù)的取值范圍;
(ii)當(dāng)時(shí),拋物線上是否存在異于、的點(diǎn),使得經(jīng)過(guò)、三點(diǎn)的圓和拋物線在點(diǎn)處有相同的切線,若存在,求出點(diǎn)的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知中心在原點(diǎn)O,焦點(diǎn)在x軸上,離心率為的橢圓過(guò)點(diǎn)
(1)求橢圓的方程;
(2)設(shè)不過(guò)原點(diǎn)O的直線與該橢圓交于P,Q兩點(diǎn),滿足直線的斜率依次成等比數(shù)列,
面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知拋物線.過(guò)點(diǎn)的直線兩點(diǎn).拋物線在點(diǎn)處的切線與在點(diǎn)處的切線交于點(diǎn)

(Ⅰ)若直線的斜率為1,求;
(Ⅱ)求面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,點(diǎn)分別是橢圓C:的左、右焦點(diǎn),過(guò)點(diǎn)軸的垂線,交橢圓的上半部分于點(diǎn),過(guò)點(diǎn)的垂線交直線于點(diǎn).

(1)如果點(diǎn)的坐標(biāo)為(4,4),求橢圓的方程;
(2)試判斷直線與橢圓的公共點(diǎn)個(gè)數(shù),并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知中心在原點(diǎn)的雙曲線的一個(gè)焦點(diǎn)是,一條漸近線的方程是。
(1)求雙曲線的方程;
(2)若以為斜率的直線與雙曲線相交于兩個(gè)不同的點(diǎn),且線段的垂直平分線與兩坐標(biāo)軸圍成的三角形的面積為,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知平面內(nèi)一動(dòng)點(diǎn)P到點(diǎn)F(1,0)的距離與點(diǎn)P到y(tǒng)軸的距離的差等于1.
(Ⅰ)求動(dòng)點(diǎn)P的軌跡C的方程;
(Ⅱ)過(guò)點(diǎn)F作兩條斜率存在且互相垂直的直線l1,l2,設(shè)l1與軌跡C相交于點(diǎn)A,B,l2與軌跡C相交于點(diǎn)D,E,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓的離心率為,直線與以原點(diǎn)為圓心、橢圓的短半軸長(zhǎng)為半徑的圓相切.

(1)求橢圓的方程;
(2)如圖,、、是橢圓的頂點(diǎn),是橢圓上除頂點(diǎn)外的任意點(diǎn),直線軸于點(diǎn),直線于點(diǎn),設(shè)的斜率為的斜率為,求證:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓的左焦點(diǎn)為,右焦點(diǎn)為

(Ⅰ)設(shè)直線過(guò)點(diǎn)且垂直于橢圓的長(zhǎng)軸,動(dòng)直線垂直于點(diǎn)P,線段的垂直平分線交于點(diǎn)M,求點(diǎn)M的軌跡的方程;
(Ⅱ)設(shè)為坐標(biāo)原點(diǎn),取曲線上不同于的點(diǎn),以為直徑作圓與相交另外一點(diǎn),求該圓的面積最小時(shí)點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案