10.雙曲線$M:{x^2}-\frac{y^2}{b^2}=1$的左,右焦點(diǎn)分別為F1,F(xiàn)2,記|F1F2|=2c,以坐標(biāo)原點(diǎn)O為圓心,c為半徑的圓與雙曲線M在第一象限的交點(diǎn)為P,若|PF1|=c+2,則P點(diǎn)的橫坐標(biāo)為( 。
A.$\frac{{\sqrt{3}+1}}{2}$B.$\frac{{\sqrt{3}+2}}{2}$C.$\frac{{\sqrt{3}+3}}{2}$D.$\frac{{3\sqrt{3}}}{2}$

分析 求得圓O的方程,聯(lián)立雙曲線的方程,求得P的橫坐標(biāo),再由雙曲線的定義,和直角三角形的勾股定理,可得c,b,化簡(jiǎn)整理可得所求橫坐標(biāo)的值.

解答 解:坐標(biāo)原點(diǎn)O為圓心,c為半徑的圓的方程為x2+y2=c2,
由$\left\{\begin{array}{l}{{x}^{2}+{y}^{2}={c}^{2}}\\{{x}^{2}-\frac{{y}^{2}}{^{2}}=1}\end{array}\right.$,解得x2=$\frac{{c}^{2}+^{2}}{^{2}+1}$,
由|PF1|=c+2,
由雙曲線的定義可得|PF2|=|PF1|-2a=c+2-2=c,
在直角三角形PF1F2中,可得c2+(c+2)2=4c2,
解得c=1+$\sqrt{3}$,
由c2=a2+b2=1+b2,可得b2=3+2$\sqrt{3}$,
可得P的橫坐標(biāo)為$\sqrt{\frac{7+4\sqrt{3}}{4+2\sqrt{3}}}$=$\frac{1+\sqrt{3}}{2}$.
故選:A.

點(diǎn)評(píng) 本題考查雙曲線的定義、方程和性質(zhì),考查直徑所對(duì)的圓周角為直角,以及勾股定理的運(yùn)用,考查化簡(jiǎn)整理的運(yùn)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若(x2-$\frac{1}{\root{3}{x}}$)n的展開式中有常數(shù)項(xiàng),則當(dāng)正整數(shù)n取最小值時(shí),該常數(shù)項(xiàng)為( 。
A.-21B.-7C.7D.21

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知拋物線y2=2px的準(zhǔn)線方程為x=-1焦點(diǎn)為F,A,B,C為該拋物線上不同的三點(diǎn),$\overrightarrow{\left|{FA}\right|},\overrightarrow{\left|{FB}\right|},\overrightarrow{\left|{FC}\right|}$成等差數(shù)列,且點(diǎn)B在x軸下方,若$\overrightarrow{FA}+\overrightarrow{FB}+\overrightarrow{FC}=0$,則直線AC的方程為2x-y-1=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.矩形ABCD中,AD=mAB,E為BC的中點(diǎn),若$\overrightarrow{AE}⊥\overrightarrow{BD}$,則m=( 。
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.過點(diǎn)(0,3b)的直線l與雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的一條斜率為正值的漸近線平行,若雙曲線C的右支上的點(diǎn)到直線l的距離恒大于b,則雙曲線C的離心率的最大值是3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.雙曲線C:$\frac{{x}^{2}}{3}$-y2=1的左右頂點(diǎn)分別為A1,A2,點(diǎn)P在雙曲線C上,且直線PA1的斜率的取值范圍為[1,2],那么直線PA2的斜率的取值范圍是( 。
A.[$\frac{1}{6}$,$\frac{1}{3}$]B.($\frac{1}{6}$,$\frac{1}{3}$)C.[-$\frac{1}{3}$,-$\frac{1}{6}$]D.(-$\frac{1}{3}$,-$\frac{1}{6}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.在△ABC中,角A,B,C的對(duì)邊分別是a,b,c,向量$\overrightarrow m=(5a-4c,4b)$與$\overrightarrow n=(cosB,-cosC)$互相垂直.
(Ⅰ)求cosB的值;
(Ⅱ)若$c=5,b=\sqrt{10}$,求△ABC的面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1的左、右焦點(diǎn)分別是F1,F(xiàn)2,正三角形△AF1F2的頂點(diǎn)A在y軸上,邊AF1與雙曲線左支交于點(diǎn)B,且$\overrightarrow{A{F}_{1}}$=4$\overrightarrow{B{F}_{1}}$,則雙曲線C的離心率的值是( 。
A.$\frac{\sqrt{3}}{2}$+1B.$\frac{\sqrt{13}+1}{3}$C.$\frac{\sqrt{13}}{3}$+1D.$\frac{\sqrt{3}+1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.不等式|x+1|•(2x-1)≥0的解集為( 。
A.{x|x≥$\frac{1}{2}$}B.{x|x≤-1或x≥$\frac{1}{2}$}C.{x|x=-1或x≥$\frac{1}{2}$}D.{x|x≤$\frac{1}{2}$或x≥-1}

查看答案和解析>>

同步練習(xí)冊(cè)答案