15.如圖,一個(gè)空間幾何體的正視圖和側(cè)視圖都是邊長(zhǎng)為1的正方形,俯視圖是一個(gè)圓,那么這個(gè)幾何體的表面積為(  )
A.$\frac{3}{2}π$B.πC.$\frac{π}{2}$D.$\frac{π}{4}$

分析 由已知三視圖得到幾何體是圓柱,明確圓柱的底面直徑以及高,即可求表面積.

解答 解:由已知三視圖得到幾何體為圓柱,其中圓柱的底面直徑為1,高為1,所以圓柱的表面積為$π×1×1+2π×{(\frac{1}{2})}^{2}=\frac{3}{2}π$;
故選A.

點(diǎn)評(píng) 本題考查了由幾何體的三視圖求幾何體的表面積;關(guān)鍵是明確幾何體的形狀.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.設(shè)α,β是兩個(gè)不同的平面,m,n,l 是三條不同的直線,下列命題中正確的是( 。
A.若α∩β=l,m?α,n?β,則m,n一定相交B.若α∥β,m?α,n?β,則m,n一定平行
C.若α∥β,m∥α,n∥β,則m,n一定平行D.若α⊥β,m⊥α,n⊥β,則m,n一定垂直

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.統(tǒng)計(jì)假設(shè)H0:P(AB)=P(A)P(B)成立時(shí),以下判斷:①P($\overline{A}$B)=P($\overline{A}$)•P(B),②P(A$\overline{B}$)=P(A)•P($\overline{B}$),③P($\overline{A}$•$\overline{B}$)=P($\overline{A}$)•P($\overline{B}$),其中正確的命題個(gè)數(shù)有(  )
A.0個(gè)B.1個(gè)C.2個(gè)D.3個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.“x=-3”是“x2+3x=0”的( 。
A.充分必要條件B.必要不充分條件
C.充分不必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.某三棱錐的三視圖如圖所示,則該三棱錐的最長(zhǎng)棱的棱長(zhǎng)為2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知m、n為兩條不同的直線,α、β、γ為三個(gè)不同的平面,下列結(jié)論正確的是( 。
A.若m∥α,n∥α,則m∥nB.若α∥γ,β∥γ,則α∥β
C.若α⊥β,m∥α,則m⊥βD.若α⊥β,m?α,n?β,則m⊥n

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知向量$\overrightarrow{a}$=(1,3),$\overrightarrow$=(λ,-6),$\overrightarrow{a}$∥$\overrightarrow$,則λ=( 。
A.-3B.-2C.2D.18

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知圓C的圓心的極坐標(biāo)為($\sqrt{2}$,$\frac{3π}{4}$),半徑r=1.
(1)求圓C的極坐標(biāo)方程;
(2)若α∈[0,$\frac{π}{3}$],直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=tcosα}\\{y=2+tsinα}\end{array}\right.$(t為參數(shù)),點(diǎn)P的直角坐標(biāo)為(0,2),直線l交圓C與A、B兩點(diǎn),求$\frac{|PA|•|PB|}{|PA|+|PB|}$的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.設(shè)Tn為等比數(shù)列{an}前n項(xiàng)積,且a4a7=10,則T10=( 。
A.45B.50C.105D.1010

查看答案和解析>>

同步練習(xí)冊(cè)答案