15.已知鈍角△ABC的面積是$\frac{\sqrt{3}}{4}$,AB=1,BC=$\sqrt{3}$,則AC=( 。
A.1B.$\sqrt{7}$C.$\sqrt{7}$或1D.2$\sqrt{2}$

分析 由條件可得B,再由余弦定理可得 AC2=AB2+CB2-2AB•CB•cosB 的值,可得AC的值.

解答 解:由題意可得鈍角△ABC的面積是$\frac{1}{2}$•AB•BC•sinB=$\frac{1}{2}×1×\sqrt{3}$×sinB=$\frac{\sqrt{3}}{4}$,
∴sinB=$\frac{1}{2}$,∴B=$\frac{5π}{6}$.
再由余弦定理可得 AC2=AB2+CB2-2AB•CB•cosB=1+3-2×$1×\sqrt{3}×\frac{\sqrt{3}}{2}$=1,
故選A.

點(diǎn)評(píng) 本題主要考查余弦定理的應(yīng)用,考查學(xué)生的計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.函數(shù)f(x)=2sin(ωx+φ)(ω>0,-$\frac{π}{2}$<φ<$\frac{π}{2}$)的部分圖象如圖所示,則f(x)的單調(diào)遞增區(qū)間為( 。
A.[kπ-$\frac{π}{6}$,kπ+$\frac{π}{3}$](k∈Z)B.[kπ-$\frac{π}{12}$,kπ+$\frac{5π}{12}$](k∈Z)
C.[kπ+$\frac{5π}{12}$,kπ+$\frac{11π}{12}$](k∈Z)D.[kπ+$\frac{π}{3}$,kπ+$\frac{5π}{6}$](k∈Z)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.在底面是菱形的四棱錐P-ABCD中,∠ABC=60°,PA=AC=a,PB=PD=$\sqrt{2}$a,點(diǎn)E在PD上,且PE:ED=2:1,面PAB∩面PCD=1.
(1)證明:l∥CD;
(2)在棱PC上是否存在一點(diǎn)F,使BF∥平面AEC?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.定義:若$\frac{f(x)}{{x}^{k}}$在[k,+∞)上為增函數(shù),則稱f(x)為“k次比增函數(shù)”,其中(k∈N*).已知f(x)=eax其中e為自然對(duì)數(shù)的底數(shù).
(1)若f(x)是“1次比增函數(shù)”,求實(shí)數(shù)a的取值范圍;
(2)當(dāng)a=$\frac{1}{2}$時(shí),求函數(shù)g(x)=$\frac{f(x)}{x}$在[m,m+1](m>0)上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.若集合A={x|-1≤x≤1},B={x|0<x<2},則A∩B=( 。
A.{x|-1≤x<0}B.{x|0<x≤1}C.{x|0≤x≤2}D.{x|0≤x≤1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知三個(gè)共面向量$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$兩兩所成角相等,且|$\overrightarrow{a}$|=1,|$\overrightarrow$|=2,|$\overrightarrow{c}$|=3,則|$\overrightarrow{a}$+$\overrightarrow$+$\overrightarrow{c}$|=( 。
A.5B.$\sqrt{3}$C.5或6D.6或$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.若函數(shù)f(x)=(k-2)x2+(k-1)x+3是偶函數(shù),則函數(shù)g(x)=kx2+2x-3的遞減區(qū)間是(  )
A.(1,+∞)B.(-1,+∞)C.(-∞,1)D.(-∞,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.定義:數(shù)列{an}對(duì)一切正整數(shù)n均滿足$\frac{{{a_n}+{a_{n+2}}}}{2}$>an+1,稱數(shù)列{an}為“凸數(shù)列”,以下關(guān)于“凸數(shù)列”的說(shuō)法:
①等差數(shù)列{an}一定是凸數(shù)列;
②首項(xiàng)a1>0,公比q>0且q≠1的等比數(shù)列{an}一定是凸數(shù)列;
③若數(shù)列{an}為凸數(shù)列,則數(shù)列{an+1-an}是單調(diào)遞增數(shù)列;
④若數(shù)列{an}為凸數(shù)列,則下標(biāo)成等差數(shù)列的項(xiàng)構(gòu)成的子數(shù)列也為凸數(shù)列.
其中正確說(shuō)法的序號(hào)是②③④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.如圖所示是正方體的平面展開(kāi)圖,在這個(gè)正方體中,其中正確的命題有( 。
①BM與ED平行
②CN與BE是異面直線; 
③CN與BM成60°角
④DM與BN垂直.
A.①②③B.②④C.③④D.②③④

查看答案和解析>>

同步練習(xí)冊(cè)答案