A. | [kπ-$\frac{π}{6}$,kπ+$\frac{π}{3}$](k∈Z) | B. | [kπ-$\frac{π}{12}$,kπ+$\frac{5π}{12}$](k∈Z) | ||
C. | [kπ+$\frac{5π}{12}$,kπ+$\frac{11π}{12}$](k∈Z) | D. | [kπ+$\frac{π}{3}$,kπ+$\frac{5π}{6}$](k∈Z) |
分析 由函數(shù)圖象可求函數(shù)的周期T,利用周期公式可求ω,由題意2sin(2×$\frac{5π}{12}$+φ)=2,解得φ=2kπ-$\frac{π}{3}$,k∈Z,結(jié)合范圍-$\frac{π}{2}$<φ<$\frac{π}{2}$,可求φ,解得函數(shù)解析式,利用正弦函數(shù)的單調(diào)性即可得解.
解答 解:由函數(shù)圖象可得:$\frac{1}{2}$T=$\frac{11π}{12}$-$\frac{5π}{12}$=π,
∴ω=2,
∵函數(shù)f(x)的圖象過點(diǎn)($\frac{5π}{12}$,2),
∴2sin(2×$\frac{5π}{12}$+φ)=2,
∴$\frac{5π}{6}$+φ=2kπ+$\frac{π}{2}$,k∈Z,可得:φ=2kπ-$\frac{π}{3}$,k∈Z,
∵-$\frac{π}{2}$<φ<$\frac{π}{2}$,
∴當(dāng),φ=0時(shí),φ=-$\frac{π}{3}$,可得:f(x)=2sin(2x-$\frac{π}{3}$),
∴令2kπ-$\frac{π}{2}$≤2x-$\frac{π}{3}$≤2kπ+$\frac{π}{2}$,k∈Z,可得:kπ-$\frac{π}{12}$≤x≤kπ+$\frac{5π}{12}$,k∈Z,
故選:B.
點(diǎn)評(píng) 本題主要考查了由y=Asin(ωx+φ)的部分圖象確定其解析式,考查了正弦函數(shù)的單調(diào)性,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
甲 | 80 | 110 | 135 | 135 | 140 |
乙 | 100 | x | y | 125 | 155 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 相切 | B. | 相交 | C. | 相離 | D. | 不確定 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {x|0<x≤3} | B. | {x|3≤x<4} | C. | {x|0<x<4} | D. | {x|-4≤x<4} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (2,+∞) | B. | (-∞,2) | C. | (1,+∞) | D. | (-∞,1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $-\frac{6}{13}$ | B. | $\frac{6}{13}$ | C. | $-\frac{17}{13}$ | D. | $\frac{17}{13}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | $\sqrt{7}$ | C. | $\sqrt{7}$或1 | D. | 2$\sqrt{2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com