5.函數(shù)f(x)=2sin(ωx+φ)(ω>0,-$\frac{π}{2}$<φ<$\frac{π}{2}$)的部分圖象如圖所示,則f(x)的單調(diào)遞增區(qū)間為(  )
A.[kπ-$\frac{π}{6}$,kπ+$\frac{π}{3}$](k∈Z)B.[kπ-$\frac{π}{12}$,kπ+$\frac{5π}{12}$](k∈Z)
C.[kπ+$\frac{5π}{12}$,kπ+$\frac{11π}{12}$](k∈Z)D.[kπ+$\frac{π}{3}$,kπ+$\frac{5π}{6}$](k∈Z)

分析 由函數(shù)圖象可求函數(shù)的周期T,利用周期公式可求ω,由題意2sin(2×$\frac{5π}{12}$+φ)=2,解得φ=2kπ-$\frac{π}{3}$,k∈Z,結(jié)合范圍-$\frac{π}{2}$<φ<$\frac{π}{2}$,可求φ,解得函數(shù)解析式,利用正弦函數(shù)的單調(diào)性即可得解.

解答 解:由函數(shù)圖象可得:$\frac{1}{2}$T=$\frac{11π}{12}$-$\frac{5π}{12}$=π,
∴ω=2,
∵函數(shù)f(x)的圖象過(guò)點(diǎn)($\frac{5π}{12}$,2),
∴2sin(2×$\frac{5π}{12}$+φ)=2,
∴$\frac{5π}{6}$+φ=2kπ+$\frac{π}{2}$,k∈Z,可得:φ=2kπ-$\frac{π}{3}$,k∈Z,
∵-$\frac{π}{2}$<φ<$\frac{π}{2}$,
∴當(dāng),φ=0時(shí),φ=-$\frac{π}{3}$,可得:f(x)=2sin(2x-$\frac{π}{3}$),
∴令2kπ-$\frac{π}{2}$≤2x-$\frac{π}{3}$≤2kπ+$\frac{π}{2}$,k∈Z,可得:kπ-$\frac{π}{12}$≤x≤kπ+$\frac{5π}{12}$,k∈Z,
故選:B.

點(diǎn)評(píng) 本題主要考查了由y=Asin(ωx+φ)的部分圖象確定其解析式,考查了正弦函數(shù)的單調(diào)性,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.汽車(chē)是碳排放量比較大的行業(yè)之一,歐盟規(guī)定,從2012年開(kāi)始,將對(duì)CO2排放量超過(guò)130g/km的不達(dá)標(biāo)M1型新車(chē)進(jìn)行懲罰,某檢測(cè)單位對(duì)甲、乙兩類(lèi)M1型品牌車(chē)各抽取5輛進(jìn)行CO2排放量檢測(cè),記錄如表(單位:g/km):
80110135135140
100xy125155
經(jīng)測(cè)算發(fā)現(xiàn),兩種品牌車(chē)CO2排放量的平均值相等,
(1)求x與y的函數(shù)關(guān)系式,并求出當(dāng)x,y分別為何值時(shí),乙品牌汽車(chē)CO2排放量的穩(wěn)定性最好?
(2)在(1)的條件下,為了跟蹤檢測(cè)兩種品牌汽車(chē)的質(zhì)量穩(wěn)定性,將在兩種品牌汽車(chē)中各抽取2輛車(chē)進(jìn)行長(zhǎng)期跟蹤監(jiān)測(cè),設(shè)抽取的4輛車(chē)中CO2排放量不達(dá)標(biāo)的數(shù)量為X,求X的概率分布和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知數(shù)列{an}的前n項(xiàng)和為Sn=n2+2n,n∈N*,令bn=$\frac{1}{{a}_{n}•{a}_{n+1}}$,則{bn} 的前n項(xiàng)和Tn$\frac{n}{3(2n+3)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.直線l:(2m-3)x+(2-m)y-3m+4=0與圓C:(x-3)2+(y-2)2=4的位置關(guān)系為( 。
A.相切B.相交C.相離D.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知函數(shù)f(x)=2sin(x+$\frac{π}{3}$)cosx.
(Ⅰ)求f(x)的值域;
(Ⅱ)設(shè)△ABC的內(nèi)角A、B、C所對(duì)的邊分別為a、b、c,已知A為銳角,f(A)=$\frac{\sqrt{3}}{2}$,b=2,c=3,求cos(A-B)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知集合A={x|0<x<4},B={x|x2+x-12≤0},則A∩B等于( 。
A.{x|0<x≤3}B.{x|3≤x<4}C.{x|0<x<4}D.{x|-4≤x<4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知函數(shù)f(x)的定義域?yàn)镽,且在R上恒有f'(x)>2,若f(1)=2,則不等式f(x)>2x的解集為( 。
A.(2,+∞)B.(-∞,2)C.(1,+∞)D.(-∞,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知復(fù)數(shù)z的共軛復(fù)數(shù)有$\overline z$,且滿足$\overline z$(2+3i)=(2-i)2,其中i是虛數(shù)單位,則復(fù)數(shù)z的虛部為( 。
A.$-\frac{6}{13}$B.$\frac{6}{13}$C.$-\frac{17}{13}$D.$\frac{17}{13}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知鈍角△ABC的面積是$\frac{\sqrt{3}}{4}$,AB=1,BC=$\sqrt{3}$,則AC=(  )
A.1B.$\sqrt{7}$C.$\sqrt{7}$或1D.2$\sqrt{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案