如圖,已知||=||=1,,的夾角為120°,的夾角為45°,||=5,用,表示

答案:
解析:


提示:

本題可采用待定系數(shù)法.


練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:044

一架飛機以360km/h的速度,沿北偏東75°的航向從城市A出發(fā)向城市B飛行,18min以后,飛機由于天氣原因按命令改飛另一個城市C,如圖,已知AD57km,CD110km,BC204km,∠ADC60°,∠DCB133°,問收到命令時飛機應該沿什么航向飛行,此時離城市C的距離是多少?

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年河北省高三3月月考數(shù)學試卷(解析版) 題型:解答題

如圖,已知橢圓=1(a>b>0)的離心率為,以該橢圓上的點和橢圓的左、右焦點F1、F2為頂點的三角形的周長為4(+1),一等軸雙曲線的頂點是該橢圓的焦點,設P為該雙曲線上異于頂點的任一點,直線PF1和PF2與橢圓的交點分別為A、B和C、D.

(1)求橢圓和雙曲線的標準方程;

(2)設直線PF1、PF2的斜率分別為k1、k2,證明:k1·k2=1;

(3)是否存在常數(shù)λ,使得|AB|+|CD|=λ|AB|·|CD|恒成立?若存在,求λ的值;若不存在,請說明理由.

 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知橢圓=1(ab>0)過點(1,),離心率為,左、右焦點分別為F1、F2.點P為直線lxy=2上且不在x軸上的任意一點,直線PF1PF2與橢圓的交點分別為A、BC、D,O為坐標原點.

(1)求橢圓的標準方程.

(2)設直線PF1、PF2的斜率分別為k1、k2.

(ⅰ)證明:=2.

(ⅱ)問直線l上是否存在點P,使得直線OA、OB、OC、OD的斜率kOA、kOB、kOCkOD滿足kOAkOBkOCkOD=0?若存在,求出所有滿足條件的點P的坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系xOy中,如圖,已知橢圓=1的左、右頂點為A、B,右焦點為F.設過點T(t,m)的直線TATB與此橢圓分別交于點M(x1,y1)、N(x2,y2),其中m>0,y1>0,y2<0.

(1)設動點P滿足PF2PB2=4,求點P的軌跡;

(2)設x1=2,x2,求點T的坐標;

(3)設t=9,求證:直線MN必過x軸上的一定點(其坐標與m無關(guān)).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知橢圓=1(ab>0)的離心率為,以該橢圓上的點和橢圓的左、右焦點F1F2為頂點的三角形的周長為4(+1),一等軸雙曲線的頂點是該橢圓的焦點,設P為該雙曲線上異于頂點的任一點,直線PF1PF2與橢圓的交點分別為ABC、D.

(1)求橢圓和雙曲線的標準方程;

(2)設直線PF1、PF2的斜率分別為k1、k2,證明:k1·k2=1;

(3)是否存在常數(shù)λ,使得|AB|+|CD|=λ|AB|·|CD|恒成立?若存在,求λ的值;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案