分析 (1)求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間即可;
(2)求出函數(shù)的導(dǎo)數(shù),結(jié)合二次函數(shù)的性質(zhì)求出滿足條件的a的范圍即可;
(3)根據(jù)函數(shù)的單調(diào)性得到b≤a-2在a∈[-2,2]上恒成立.所以 b≤-2-2,求出b的范圍即可.
解答 解:(1)f′(x)=4x3+3ax2+4x=x(4x2+3ax+4).
當(dāng)a=-$\frac{10}{3}$時,f′(x)=x(4x2-10x+4)=2x(2x-1)(x-2).
令f′(x)=0,得x1=0,x2=$\frac{1}{2}$,x3=2.
當(dāng)x變化時,f′(x),f(x)的變化情況如表:
x | (-∞, 0) | 0 | (0,$\frac{1}{2}$) | $\frac{1}{2}$ | ($\frac{1}{2}$,2) | 2 | (2, +∞) |
f′(x) | - | 0 | + | 0 | - | 0 | + |
f(x) | ?↘ | 極小值 | ?↗ | 極大值 | ?↘ | 極小值 | ?↗ |
點評 本題考查了函數(shù)的單調(diào)性、最值問題,考查導(dǎo)數(shù)的應(yīng)用以及轉(zhuǎn)化思想,是一道中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{17}{16}$ | B. | $\frac{15}{16}$ | C. | 1 | D. | $\frac{7}{8}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {3,5} | B. | {2,3,5} | C. | {2,5} | D. | {2,3} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com