2.已知OA為球O的半徑,垂直于OA的平面截球面得到圓M(M為截面與OA的交點).若圓M的面積為2π,OM=$\sqrt{2}$,則球的表面積為16π.

分析 由題意求出圓M的半徑,設(shè)出球的半徑,二者與OM構(gòu)成直角三角形,求出球的半徑,然后可求球的表面積.

解答 解:∵圓M的面積為2π,∴圓M的半徑r=$\sqrt{2}$,
設(shè)球的半徑為R,
由圖可知,R2=2+2=4.
∴S=4πR2=16π.
故答案為:16π.

點評 本題是基礎(chǔ)題,考查球的體積、表面積的計算,理解并能夠應(yīng)用小圓的半徑、球的半徑、以及球心與圓心的連線的關(guān)系,是本題的突破口,解題重點所在,仔細體會.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

18.若tan($α+\frac{π}{3}$)=2$\sqrt{3}$,則tan($α-\frac{2π}{3}$)的值是2$\sqrt{3}$,2sin2α-cos2α 的值是-$\frac{43}{52}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.設(shè)變量x,y滿足約束條件$\left\{\begin{array}{l}{y≤3x-2}&{\;}\\{x-2y+1≤0}&{\;}\\{2x+y≤8}&{\;}\end{array}\right.$,則y-2x的最大值是( 。
A.-4B.-2C.-1D.0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.正方體ABCD-A'B'C'D'的棱長為a,連接A'C',A'D,A'B,BD,BC',C'D,得到一個三棱錐A'-BC'D.求:
(1)求異面直線A'D與C'D′所成的角;
(2)三棱錐A'-BC'D的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.求滿足下列條件的橢圓的標準方程.
(1)長軸與短軸的和為18,焦距為6;
(2)焦點在x軸上過點(0,2),長軸長為6.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.已知F1,F(xiàn)2分別是橢圓的左、右焦點,現(xiàn)以F2為圓心作一個圓恰好經(jīng)過橢圓中心并且交橢圓于點M、N,若過F1的直線MF1是圓F2的切線,則橢圓的離心率為$\sqrt{3}$-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.空間四邊形ABCD中,E、F分別為AC、BD中點,若CD=2AB,EF⊥AB,則直線EF與CD所成的角的度數(shù)為30°.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.設(shè)函數(shù)f(x)=x4+ax3+2x2+b(x∈R),其中a,b∈R.
(1)當a=-$\frac{10}{3}$時,討論函數(shù)f(x)的單調(diào)性;
(2)若函數(shù)f(x)僅在x=0處有極值,求a的取值范圍;
(3)若對于任意的a∈[-2,2],不等式f(x)≤1在[-1,0]上恒成立,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.在平行四邊形ABCD中,$\overrightarrow{AB}=\overrightarrow a,\overrightarrow{AD}=\overrightarrow b,\overrightarrow{AM}=4\overrightarrow{MC},P$為AD的中點,$\overrightarrow{MP}$=( 。
A.$\frac{4}{5}$$\overrightarrow{a}$+$\frac{3}{10}$$\overrightarrow$B.$\frac{4}{5}$$\overrightarrow{a}$+$\frac{13}{10}$$\overrightarrow$C.-$\frac{4}{5}$$\overrightarrow{a}$-$\frac{3}{10}$$\overrightarrow$D.$\frac{3}{4}$$\overrightarrow{a}$+$\frac{1}{4}$$\overrightarrow$

查看答案和解析>>

同步練習冊答案