【題目】在某海濱城市附近海面有一臺(tái)風(fēng),據(jù)監(jiān)測(cè),當(dāng)前臺(tái)風(fēng)中心位于城市如圖東偏南方向300km的海面,并以20km/h速度向西偏北方向移動(dòng),臺(tái)風(fēng)侵襲的范圍為圓形區(qū)域,當(dāng)前半徑為60km,并以10km/h速度不斷增大,問幾小時(shí)后該城市開始受到臺(tái)風(fēng)的侵襲?受到臺(tái)風(fēng)侵襲的時(shí)間有多少小時(shí)?

【答案】小時(shí)后該城市開始受到臺(tái)風(fēng)侵襲,受到臺(tái)風(fēng)侵襲的時(shí)間有小時(shí)

【解析】

試題分析:建立坐標(biāo)系,設(shè)在時(shí)刻:臺(tái)風(fēng)中心的坐標(biāo)進(jìn)而可知此時(shí)臺(tái)風(fēng)侵襲的區(qū)域,根據(jù)題意可知其中,若在時(shí),該城市受到臺(tái)風(fēng)的侵襲,則有,進(jìn)而可得關(guān)于的一元二次不等式,求得的范圍,答案可得

試題解析:如圖建立坐標(biāo)系:以為原點(diǎn),正東方向?yàn)?/span>軸正向

在時(shí)刻:臺(tái)風(fēng)中心的坐標(biāo)為

是臺(tái)風(fēng)邊緣線上一點(diǎn),則此時(shí)臺(tái)風(fēng)侵襲的區(qū)域是

其中,若在時(shí),該城市受到臺(tái)風(fēng)的侵襲,

則有,

,即

解得

答:12小時(shí)后該城市開始受到臺(tái)風(fēng)氣侵襲,受到臺(tái)風(fēng)的侵襲的時(shí)間有12小時(shí)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)直角三角形繞斜邊所在直線旋轉(zhuǎn)360°形成的空間幾何體為( )
A.一個(gè)圓錐
B.一個(gè)圓錐和一個(gè)圓柱
C.兩個(gè)圓錐
D.一個(gè)圓錐和一個(gè)圓臺(tái)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義域?yàn)?/span>R的四個(gè)函數(shù)yx3,y2x,yx21,y2sin x中,奇函數(shù)的個(gè)數(shù)是( )

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形的邊長為2,分別為線段的中點(diǎn),在五棱錐中,為棱的中點(diǎn),平面與棱分別交于點(diǎn)

(1)求證:;

(2)若底面,且,求直線與平面所成角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)

1當(dāng)時(shí),求函數(shù)的定義域;

2,請(qǐng)判定的奇偶性;

3是否存在實(shí)數(shù),使函數(shù)遞增,并且最大值為1,若存在,求出的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)B={1,2},A={x|xB},則A與B的關(guān)系是( )
A.AB
B.BA
C.A∈B
D.B∈A

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知矩形所在平面垂直于直角梯所在平面,平面平面,且,且.

(1)設(shè)點(diǎn)為棱中點(diǎn),在內(nèi)是否存在點(diǎn),使得平面?若存在,請(qǐng)證明,若不存在,說明理由;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD為菱形,∠BAD=60°,Q為AD的中點(diǎn).

1若PA=PD,求證:平面PQB⊥平面PAD;

2若平面PAD⊥平面ABCD,且PA=PD=AD=2,點(diǎn)M在線段PC上,且PM=3MC,求三棱錐P﹣QBM的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)滿足,對(duì)于任意,且..

(1)求函數(shù)解析式;

(2)探求函數(shù)在區(qū)間上的零點(diǎn)個(gè)數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案