【題目】某石化集團獲得了某地深海油田區(qū)塊的開采權,集團在該地區(qū)隨機初步勘探了部分幾口井,取得了地質資料.進入全面勘探時期后,集團按網絡點來布置井位進行全面勘探,由于勘探一口井的費用很高,如果新設計的井位與原有井位重合或接近,便利用舊井的地質資料,不必打這口新井,以節(jié)約勘探費用,勘探初期數據資料見如表:
井號 | 1 | 2 | 3 | 4 | 5 | 6 |
坐標() | ||||||
鉆探深度() | 2 | 4 | 5 | 6 | 8 | 10 |
出油量() | 40 | 70 | 110 | 90 | 160 | 205 |
(參考公式和計算結果: , , , )
(1)號舊井位置線性分布,借助前組數據求得回歸直線方程為;求,并估計的預報值;
(2)現(xiàn)準備勘探新井,若通過1,3,5,7號并計算出的, 的值(, 精確到)相比于(1)中的, ,且,則使用位置最接近的已有舊井,否則在新位置打開,請判斷可否使用舊井?
科目:高中數學 來源: 題型:
【題目】已知函數.
(1)求曲線在點處的切線方程;
(2)設,計算的導數.
【答案】(1).(2).
【解析】試題分析:(1)由導數的基本定義就出斜率,根據點斜式寫出切線方程;(2), .
試題解析:
(1),則,
又,∴所求切線方程為,即.
(2), .
【題型】解答題
【結束】
18
【題目】對某校高一年級學生參加社區(qū)服務次數進行統(tǒng)計,隨機抽取名學生作為樣本,得到這名學生參加社區(qū)服務的次數.根據此數據作出了頻數與頻率的統(tǒng)計表和頻率分布直方圖如下:
(1)求出表中及圖中的值;
(2)若該校高一學生有800人,試估計該校高一學生參加社區(qū)服務的次數在區(qū)間內的人數.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設定義在上的函數對于任意實數,都有成立,且,當時,.
(1)判斷的單調性,并加以證明;
(2)試問:當時,是否有最值?如果有,求出最值;如果沒有,說明理由;
(3)解關于的不等式,其中.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知以點A(-1,2)為圓心的圓與直線l1:x+2y+7=0相切.過點B(-2,0)的動直線l與圓A相交于M,N兩點,Q是MN的中點.
(1)求圓A的方程;
(2)當|MN|=2時,求直線l的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某機構在某一學校隨機抽取30名學生參加環(huán)保知識測試,測試成績(單位:分)如圖所示,假設得分值的中位數為me , 眾數為m0 , 平均值為 ,則( )
A.me=m0=
B.me=m0<
C.me<m0<
D.m0<me<
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知二次函數f(x)滿足f(x+1)-f(x)=-2x+1,且f(2)=15.
(1)求函數f(x)的解析式;
(2) 令g(x)=(2-2m)x-f(x).
① 若函數g(x)在x∈[0,2]上是單調函數,求實數m的取值范圍;
② 求函數g(x)在x∈[0,2]上的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(12分)已知函數f(x)對任意的實數m,n都有:f(m+n)=f(m)+f(n)-1,
且當x>0時,有f(x)>1.
(1)求f(0).
(2)求證:f(x)在R上為增函數.
(3)若f(1)=2,且關于x的不等式f(ax-2)+f(x-x2)<3對任意的x∈[1,+∞)恒成立,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】銳角△ABC中,角A,B,C所對的邊分別為a,b,c,且acosB+bcosA= csinC.
(1)求cosC;
(2)若a=6,b=8,求邊c的長.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com