考點(diǎn):分段函數(shù)的應(yīng)用
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:(1)把
a=代入化簡(jiǎn)得f(x)=
,由此可知當(dāng)x
<時(shí)f(x)=-2(x-2)遞減,當(dāng)x
>時(shí)f(x)=2(x-1)遞增,則
fmin(x)=f()=1;
(2)分a<1時(shí),當(dāng)a>2時(shí),當(dāng)1<a<2時(shí)三種情況,討論f(x)在區(qū)間(-∞,a)與(a,+∞)的單調(diào)性,利用f(t
1)=
,f(t
2)=
,得出t
1-t
2的表達(dá)式,從而求出取值范圍.
解答:
解:(1)若
a=,則f(x)=
,
當(dāng)x
<時(shí)f(x)=-2(x-2)遞減,當(dāng)x
>時(shí)f(x)=2(x-1)遞增,
∴當(dāng)x=
時(shí),函數(shù)f(x)取最小值,即
fmin(x)=f()=1,
故答案為:1
(2)當(dāng)a<1時(shí),f(x)在區(qū)間(-∞,+∞)上單調(diào)減,且f(a)=1,此時(shí)有
,
∴
t1-t2=-a>;
當(dāng)a>2時(shí),f(x)在區(qū)間(-∞,+∞)上單調(diào)遞增,此時(shí)有
,
∴
t1-t2=-a<-當(dāng)1<a<2時(shí),f(x)在區(qū)間(-∞,a)單調(diào)減,(a,+∞)單調(diào)增,故f(x)≥f(a)=1,不滿足.
綜上,a的取值范圍為(-∞,-
)∪(
,+∞),
故答案為:(-∞,-
)∪(
,+∞).
點(diǎn)評(píng):本題本題考查的知識(shí)點(diǎn)是函數(shù)單調(diào)性的性質(zhì),熟練掌握分段函數(shù)單調(diào)性的特征是解答的關(guān)鍵