若|
a
|=|
b
|=|
c
|=1,且<
a
,
b
>=
π
2
,則(
a
+
b
-
2
c
)•(
a
+
b
+
2
c
)=( 。
A、0B、1C、2D、3
考點(diǎn):平面向量數(shù)量積的運(yùn)算
專題:平面向量及應(yīng)用
分析:運(yùn)用向量垂直的條件:數(shù)量積為0,以及向量的平方即為模的平方,計(jì)算即可得到所求.
解答: 解:若|
a
|=|
b
|=|
c
|=1,且<
a
,
b
>=
π
2
,
a
b
=0,
則(
a
+
b
-
2
c
)•(
a
+
b
+
2
c
)=(
a
+
b
2-2
c
2

=
a
2
+
b
2
+2
a
b
-2
c
2
=1+1-2=0,
故選A.
點(diǎn)評(píng):本題考查向量的數(shù)量積的性質(zhì),向量垂直的條件:數(shù)量積為0,向量的平方即為模的平方,考查運(yùn)算能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知x,y分別滿足xx=e2,y+lny=ln2,則xy=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=2+logax,(a>0且a≠1)必過(guò)定點(diǎn)
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知一個(gè)幾何體的三視圖如圖所示,根據(jù)圖中尺寸可得該幾何體的體積為(  )
A、36πB、24π
C、15πD、12π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知|
a
+
b
|=
19
,|
a
-
b
|=
7
,|
a
|=2,則|
b
|=(  )
A、
15
B、
13
C、
11
D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知不等式
3x2+px+6
x2-x+1
≤6對(duì)?x∈R恒成立,則實(shí)數(shù)p的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,Q為橢圓E:
x2
a2
+
y2
b2
=1
(a>b>0)上一動(dòng)點(diǎn),F(xiàn)(2,0)為橢圓E的右焦點(diǎn).QF的最小值為1,最大值為5,點(diǎn)A(1,0),點(diǎn)T為直線x=4上一動(dòng)點(diǎn),過(guò)F點(diǎn)的直線l與AT垂直,l上一點(diǎn)P滿足
PA
PT
=0.
(1)AP長(zhǎng)是否為定值?若是,求出該定值,若不是,說(shuō)明理由.
(2)求PQ最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}中,a1=
1
2
,點(diǎn)(n,2an+1-an)在直線上y=x上,其中n=1,2,3…
(1)令bn=an-1-an-3,求證數(shù)列{bn}是等比數(shù)列;
(2)求數(shù)列{an}的通項(xiàng);
(3)設(shè)Sn,Tn分別為數(shù)列{an},{bn}的前n項(xiàng)和,是否存在實(shí)數(shù)λ,使得數(shù)列{
SnTn
n
}為等差數(shù)列存在,試求出λ,不存在,則說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

平行四邊形ABCD中,∠CBA=120°,AD=4,對(duì)角線BD=2
3
,將其沿對(duì)角線BD折起,使平面ABD⊥平面BCD,若四面體ABCD頂點(diǎn)在同一個(gè)球面上,則該球的體積為(  )
A、
20
3
5
π
B、
160
3
5
π
C、32
3
π
D、2π

查看答案和解析>>

同步練習(xí)冊(cè)答案