【題目】設(shè)Sn為數(shù)列{an}的前項(xiàng)的和,且Sn = (an -1)(nN*), 數(shù)列{bn }的通項(xiàng)公式bn = 4n+5.

①求證:數(shù)列{an }是等比數(shù)列;

②若d{a1 ,a2 a3 ,……}∩{b1 ,b2 ,b3 ,……},則稱(chēng)d為數(shù)列{an }{bn }的公共項(xiàng),按它們?cè)谠瓟?shù)列中的先后順序排成一個(gè)新的數(shù)列{dn },求數(shù)列{dn }的通項(xiàng)公式.

【答案】(1)見(jiàn)解析(2)dn=9n.

【解析】

①利用公式an=Sn-Sn1代入得出anan1之間的關(guān)系.再根據(jù)等比數(shù)列定義進(jìn)行證明,②令ak=bm ,得可得,因此數(shù)列{dn }為首項(xiàng)與公比為9的等比數(shù)列,最后根據(jù)等比數(shù)列通項(xiàng)公式得結(jié)果.

解:①當(dāng)n=1時(shí),由a1=S1=,得出a1=3.當(dāng)n≥2時(shí),

②由an=3n,得:

因此dn=9×9n—1=9n.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的兩個(gè)焦點(diǎn)和短軸的兩個(gè)頂點(diǎn)構(gòu)成的四邊形是一個(gè)正方形,且其周長(zhǎng)為.

Ⅰ)求橢圓的方程;

Ⅱ)設(shè)過(guò)點(diǎn)的直線與橢圓相交于兩點(diǎn),點(diǎn)關(guān)于原點(diǎn)的對(duì)稱(chēng)點(diǎn)為,若點(diǎn)總在以線段為直徑的圓內(nèi),的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著節(jié)假日外出旅游人數(shù)增多,倡導(dǎo)文明旅游的同時(shí),生活垃圾處理也面臨新的挑戰(zhàn),某海濱城市沿海有三個(gè)旅游景點(diǎn),在岸邊兩地的中點(diǎn)處設(shè)有一個(gè)垃圾回收站點(diǎn)(如圖),兩地相距10,從回收站觀望地和地所成的視角為,且,設(shè)

(1)用分別表示,并求出的取值范圍;

(2)某一時(shí)刻太陽(yáng)與三點(diǎn)在同一直線,此時(shí)地到直線的距離為,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)=ex+ax2(a∈R).
(1)若函數(shù)f(x)在R上單調(diào),且y=f′(x)有零點(diǎn),求a的值;
(2)若對(duì)x∈[0,+∞),有 ≥1,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),

(1)求不等式的解集;

(2)若對(duì)一切,均有成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)
(Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)對(duì)任意 ,都有xln(kx)﹣kx+1≤mx,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在銳角△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,已知a=bcosC+ csinB.
(1)若a=2,b= ,求c
(2)設(shè)函數(shù)y= sin(2A﹣30°)﹣2sin2(C﹣15°),求y的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)組織了一次高二文科學(xué)生數(shù)學(xué)學(xué)業(yè)水平模擬測(cè)試,學(xué)校從測(cè)試合格的男、女生中各隨機(jī)抽取100人的成績(jī)進(jìn)行統(tǒng)計(jì)分析,分別制成了如圖所示的男生和女生數(shù)學(xué)成績(jī)的頻率分布直方圖.

(Ⅰ)若所得分?jǐn)?shù)大于等于80分認(rèn)定為優(yōu)秀,求男、女生優(yōu)秀人數(shù)各有多少人?

(Ⅱ)在(Ⅰ)中的優(yōu)秀學(xué)生中用分層抽樣的方法抽取5人,從這5人中任意任取2人,求至少有一名男生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)車(chē)間為了規(guī)定工時(shí)定額,需要確定加工某種零件所花費(fèi)的時(shí)間,為此進(jìn)行了6次試驗(yàn),收集數(shù)據(jù)如下:

零件數(shù)(個(gè))

加工時(shí)間(小時(shí))

(Ⅰ)在給定的坐標(biāo)系中劃出散點(diǎn)圖,并指出兩個(gè)變量是正相關(guān)還是負(fù)相關(guān);

(Ⅱ)求回歸直線方程;

(Ⅲ)試預(yù)測(cè)加工個(gè)零件所花費(fèi)的時(shí)間?

附:對(duì)于一組數(shù)據(jù),,……,,其回歸直線的斜率和截距的最小二乘估計(jì)分別為:

.

查看答案和解析>>

同步練習(xí)冊(cè)答案