分析 由已知的三個(gè)等式總結(jié)項(xiàng)數(shù)以及最后一項(xiàng)的分母變化以及右邊分?jǐn)?shù)變化與序號(hào)的關(guān)系,找到規(guī)律.
解答 解:觀察下列各式:1+$\frac{1}{2^2}<\frac{3}{2}1+\frac{1}{2^2}+\frac{1}{3^2}<\frac{5}{3}1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}<\frac{7}{4}$…照此規(guī)律,
發(fā)現(xiàn)不等式的左右兩邊:不等式的右邊的分子是$\frac{2n+1}{n+1}$的形式,分母是n+1的形式,
故由歸納推理的模式可得:當(dāng)n?N*時(shí),1+$\frac{1}{2^2}+\frac{1}{3^2}+…+\frac{1}{{{{(n+1)}^2}}}$<$\frac{2n+1}{n+1}$
故答案為:$\frac{2n+1}{n+1}$.
點(diǎn)評(píng) 本題考查了歸納推理關(guān)鍵是從已知的不等式發(fā)現(xiàn)左右兩邊變化與序號(hào)的關(guān)系,發(fā)現(xiàn)總結(jié)規(guī)律.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ($\frac{1}{4}$,+∞) | B. | (2,+∞) | C. | (-∞,2) | D. | (-1,$\frac{1}{4}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | |m|>|n| | B. | ($\frac{1}{2}$)m<($\frac{1}{2}$)n | C. | sinm>sinn | D. | m${\;}^{\frac{1}{2}}$>n${\;}^{\frac{1}{2}}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 240種 | B. | 180種 | C. | 150種 | D. | 540種 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1條 | B. | 2條 | C. | 多余2條 | D. | 不確定 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | K | B. | 2.5K | C. | 4K | D. | 5K |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com