分析 利用Sn+1-Sn可知an+1=6(n+1)-1,通過n=1可知首項,進而可得結(jié)論.
解答 解:∵Sn=3n2+2n-1,
∴Sn+1=3(n+1)2+2(n+1)-1,
兩式相減得:an+1=Sn+1-Sn
=[3(n+1)2+2(n+1)-1]-(3n2+2n-1)
=6n+5
=6(n+1)-1,
又∵a1=S1=3+2-1=4,
∴an=$\left\{\begin{array}{l}{4,}&{n=1}\\{6n-1,}&{n≥2}\end{array}\right.$,
故答案為:$\left\{\begin{array}{l}{4,}&{n=1}\\{6n-1,}&{n≥2}\end{array}\right.$.
點評 本題考查數(shù)列的通項,注意解題方法的積累,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{6}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{3}$ | D. | $\frac{π}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(x)既偶函數(shù),又是周期函數(shù). | B. | f(x)的最大值為$\frac{\sqrt{3}}{2}$ | ||
C. | y=f(x)的圖象關(guān)于直線x=$\frac{π}{2}$對稱 | D. | y=f(x)的圖象關(guān)于直線x=π對稱 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com