從集合{1,2,3,…,n}的所有非空子集中等可能的取出一個.
(Ⅰ)記性質(zhì)t:集合中所有元素之和為m(m<n且m為偶數(shù)),求取出的是至多含有2個元素且滿足性質(zhì)t的非空子集的概率;
(Ⅱ)記所有取出的非空子集的元素個數(shù)為ξ,求ξ的分布列及其數(shù)學期望.
考點:離散型隨機變量及其分布列,離散型隨機變量的期望與方差
專題:概率與統(tǒng)計
分析:(I)記“所取出的非空子集滿足性質(zhì)r”為事件A,則基本事件數(shù)是2n-1個.分別對n分類討論:當n=3時;當n=4時;當n=5時;當n=6時;當n=7時;當n=8時.可得:當n=2k-1或2k(k≥2)時,滿足性質(zhì)r的集合只有1+2+…+(k-1)=
k(k-1)
2
個.即可得出:取出的是至多含有2個元素且滿足性質(zhì)t的非空子集的概率.
(2)由題意知ξ的可能取值是1,2,…,n,基本事件的總數(shù)是2n-1個.ξ的分布列是:P(ξ=k)=
k
n
2n-1
,進而得出數(shù)學期望.
解答: 解:(I)記“所取出的非空子集滿足性質(zhì)r”為事件A,則基本事件數(shù)是2n-1個.
當n=3時,{1,2,3},其中滿足性質(zhì)r的集合只有一個{2};
當n=4時,{1,2,3,4},其中滿足性質(zhì)r的集合只有一個{2};
當n=5時,{1,2,3,4,5},其中滿足性質(zhì)r的集合只有3個{2},{4},{1,3};
當n=6時,{1,2,3,4,5,6},其中滿足性質(zhì)r的集合只有3個{2},{4},{1,3};
當n=7時,{1,2,3,4,5,6,7},其中滿足性質(zhì)r的集合只有6個{2},{4},{6},{1,3},{1,5},
{2,4};
當n=8時,{1,2,3,4,5,6,7,8},其中滿足性質(zhì)r的集合只有6個{2},{4},{6},{1,3},{1,5},
{2,4}.
…,由以上可得:當n=2k-1或2k(k≥2)時,滿足性質(zhì)r的集合只有1+2+…+(k-1)=
k(k-1)
2
個.
∴取出的是至多含有2個元素且滿足性質(zhì)t的非空子集的概率P=
k(k-1)
2(2n-1)

(2)由題意知ξ的可能取值是1,2,…,n,基本事件的總數(shù)是2n-1個.
ξ的分布列是:
 ξ 1 2 … n
 p(ξ) 
1
n
2n-1
 
2
n
2n-1
 … 
n
n
2n-1
其數(shù)學期望為E(ξ)=
1
n
+2
2
n
+…+n
n
n
2n-1
=
n•2n-1
2n-1
點評:本題考查了集合的性質(zhì)、組合數(shù)的計算公式及其性質(zhì)、概率及其數(shù)學期望的計算方法,考查了推理能力、猜想能力與計算能力,屬于難題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知p:|x-a|>
3
2
,q:2x2+9x-18<0,
(1)若?p是?q的充分不必要條件,求a的取值范圍;
(2)若a=1,且p假q真,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知三角形ABC的三個頂點的坐標為A(5,1),B(7,-3),C(2,-8),求直線AB及AB邊上的中線的直線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

x>1的充分不必要條件是( 。
A、x>0B、x≥1
C、x=0D、x=2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

命題“對任意的x∈R,x2+1>0”的否定是( 。
A、不存在x∈R,x2+1>0
B、存在x∈R,x2+1>0
C、存在x∈R,x2+1≤0
D、對任意的x∈R,x2+1≤0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在四棱錐P-ABCD中,PD⊥平面ABCD,底面ABCD是菱形,∠BAD=60°,O為AC與BD的交點,E為PB上任意一點.
(1)證明:平面EAC⊥平面PBD;
(2)若PD∥平面EAC,PD=
6
,AD=2,求二面角B-AE-C的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的前n項和Sn=
1
3
an+
2
3
,則{an}的通項公式an=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖分別是正三棱臺ABC-A1B1C1的直觀圖和正視圖,O,O1分別是上下底面的中心,E是BC中點.

(1)求正三棱臺ABC-A1B1C1的體積;(注:棱臺體積公式:V=
1
3
(S+
SS
+S)h,其中s為棱臺上底面面積,s為棱臺下底面面積,h為棱臺高)
(2)求平面EA1B1與平面A1B1C1的夾角的余弦;
(3)若P是棱A1C1上一點,求CP+PB1的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

方程
x2
25-m
+
y2
16-m
=1表示一個橢圓時,求m的取值范圍.

查看答案和解析>>

同步練習冊答案