[2014·武漢調(diào)研]直線x-2y+1=0關(guān)于直線x=1對(duì)稱的直線方程是( )
A.x+2y-1=0 B.2x+y-1=0
C.2x+y-3=0 D.x+2y-3=0
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)一輪配套特訓(xùn):1-2命題及其關(guān)系、充分條件與必要條件(解析版) 題型:解答題
求證:方程x2+ax+1=0的兩實(shí)根的平方和大于3的必要條件是|a|>,這個(gè)條件是其充分條件嗎?為什么?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2015數(shù)學(xué)一輪復(fù)習(xí)迎戰(zhàn)高考:8-7拋物線(解析版) 題型:填空題
[2012·重慶高考]過(guò)拋物線y2=2x的焦點(diǎn)F作直線交拋物線于A,B兩點(diǎn),若|AB|=,|AF|<|BF|,則|AF|=________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2015數(shù)學(xué)一輪復(fù)習(xí)迎戰(zhàn)高考:8-4直線與圓、圓與圓的位置關(guān)系(解析版) 題型:選擇題
[2013·重慶高考]設(shè)P是圓(x-3)2+(y+1)2=4上的動(dòng)點(diǎn),Q是直線x=-3上的動(dòng)點(diǎn),則|PQ|的最小值為( )
A.6 B.4 C.3 D.2
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2015數(shù)學(xué)一輪復(fù)習(xí)迎戰(zhàn)高考:8-3圓的方程(解析版) 題型:選擇題
[2012·遼寧高考]將圓x2+y2-2x-4y+1=0平分的直線是( )
A.x+y-1=0 B.x+y+3=0
C.x-y+1=0 D.x-y+3=0
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2015數(shù)學(xué)一輪復(fù)習(xí)迎戰(zhàn)高考:8-1直線的傾斜角與斜率、直線方程(解析版) 題型:選擇題
[2014·東北三校聯(lián)考]經(jīng)過(guò)兩點(diǎn)A(4,2y+1),B(2,-3)的直線的傾斜角為,則y=( )
A.-1 B.-3 C.0 D.2
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2015數(shù)學(xué)一輪復(fù)習(xí)迎戰(zhàn)高考:7-6空間向量及運(yùn)算(解析版) 題型:選擇題
[2013·廣州質(zhì)檢]已知向量a=(2,-1,3),b=(-1,4,-2),c=(7,5,λ),若a,b,c三個(gè)向量共面,則實(shí)數(shù)λ等于( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2015數(shù)學(xué)一輪復(fù)習(xí)迎戰(zhàn)高考:7-3空間點(diǎn)、直線、平面之間的位置關(guān)系(解析版) 題型:選擇題
[2013·安徽高考]在下列命題中,不是公理的是( )
A.平行于同一個(gè)平面的兩個(gè)平面相互平行
B.過(guò)不在同一條直線上的三點(diǎn),有且只有一個(gè)平面
C.如果一條直線上的兩點(diǎn)在一個(gè)平面內(nèi),那么這條直線上所有的點(diǎn)都在此平面內(nèi)
D.如果兩個(gè)不重合的平面有一個(gè)公共點(diǎn),那么它們有且只有一條過(guò)該點(diǎn)的公共直線
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2015數(shù)學(xué)一輪復(fù)習(xí)迎戰(zhàn)高考:5-5數(shù)列的綜合應(yīng)用(解析版) 題型:填空題
[2013·重慶高考]已知{an}是等差數(shù)列,a1=1,公差d≠0,Sn為其前n項(xiàng)和,若a1,a2,a5成等比數(shù)列,則S8=________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com