【題目】設(shè)函數(shù),.

1)若,,求函數(shù)的單調(diào)區(qū)間;

2)若曲線在點(diǎn)處的切線與直線平行.

①求,的值;

②求實(shí)數(shù)的取值范圍,使得恒成立.

【答案】(1)的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為(2)①

【解析】

1)求出函數(shù)的導(dǎo)數(shù),通過解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間即可;

2)①求出gx)的導(dǎo)數(shù),得到關(guān)于ab的方程組,解出即可;

②問題轉(zhuǎn)化為gx)﹣kx2x)>0x∈(0,+∞)恒成立.令Fx)=gx)﹣kx2x),求出函數(shù)的導(dǎo)數(shù),通過討論k的范圍,求出函數(shù)的單調(diào)區(qū)間,從而確定k的范圍即可.

1)當(dāng),時,

.當(dāng)時,

當(dāng)時,

所以的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為.

2)①因?yàn)?/span>,

所以,依題設(shè)有,即.

解得.

.

恒成立,即恒成立.

,則有.

當(dāng)時,當(dāng)時,,

所以上單調(diào)遞增.

所以,即當(dāng)時,;

當(dāng)時,當(dāng)時,,所以上單調(diào)遞減,故當(dāng)時,,即當(dāng)時,不恒成立.

綜上,.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)a>0a≠1)是奇函數(shù).

1)求常數(shù)k的值;

2)若已知f1=,且函數(shù)在區(qū)間[1,+∞])上的最小值為—2,求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某土特產(chǎn)超市為預(yù)估2020年元旦期間游客購買土特產(chǎn)的情況,對2019年元旦期間的90位游客購買情況進(jìn)行統(tǒng)計,得到如下人數(shù)分布表.

購買金額(元)

人數(shù)

10

15

20

15

20

10

1)根據(jù)以上數(shù)據(jù)完成列聯(lián)表,并判斷是否有的把握認(rèn)為購買金額是否少于60元與性別有關(guān).

不少于60

少于60

合計

40

18

合計

2)為吸引游客,該超市推出一種優(yōu)惠方案,購買金額不少于60元可抽獎3次,每次中獎概率為(每次抽獎互不影響,且的值等于人數(shù)分布表中購買金額不少于60元的頻率),中獎1次減5元,中獎2次減10元,中獎3次減15.若游客甲計劃購買80元的土特產(chǎn),請列出實(shí)際付款數(shù)(元)的分布列并求其數(shù)學(xué)期望.

附:參考公式和數(shù)據(jù):,.

附表:

2.072

2.706

3.841

6.635

7.879

0.150

0.100

0.050

0.010

0.005

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱中,側(cè)面為正方形,側(cè)面為菱形,,平面平面.

1)求直線與平面所成角的正弦值;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列判斷正確的是(

A.若隨機(jī)變量服從正態(tài)分布,則;

B.已知直線平面,直線平面,則“”是“”的充分不必要條件;

C.若隨機(jī)變量服從二項(xiàng)分布:,

D.的充分不必要條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐中,底面為矩形,平面,,.為直徑的球與交于點(diǎn)(異于點(diǎn)),則四面體外接球半徑______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于定義在區(qū)間上的函數(shù),若同時滿足:

)若存在閉區(qū)間,使得任取,都有是常數(shù));

)對于內(nèi)任意,當(dāng),時總有恒成立,則稱函數(shù)為“平底型”函數(shù).

1)判斷函數(shù)是否是“平底型”函數(shù)?簡要說明理由;

2)設(shè)是(1)中的“平底型”函數(shù),若不等式對一切恒成立,求實(shí)數(shù)的取值范圍;

3)函數(shù)是區(qū)間上的“平底型”函數(shù),求滿足的條件,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)滿足以下兩個條件的有窮數(shù)列期待數(shù)列:①;②.

1)若等比數(shù)列期待數(shù)列,求公比

2)若一個等差數(shù)列既是期待數(shù)列又是遞增數(shù)列,求該數(shù)列的通項(xiàng)公式;

3)記期待數(shù)列的前項(xiàng)和為,求證;數(shù)列不能為期待數(shù)列”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】海洋藍(lán)洞是地球罕見的自然地理現(xiàn)象,被喻為“地球留給人類保留宇宙秘密的最后遺產(chǎn)”,我國擁有世界上最深的海洋藍(lán)洞,若要測量如圖所示的藍(lán)洞的口徑,兩點(diǎn)間的距離,現(xiàn)在珊瑚群島上取兩點(diǎn),測得,,,則兩點(diǎn)的距離為___

查看答案和解析>>

同步練習(xí)冊答案