4.已知實數(shù)x、y滿足$\left\{\begin{array}{l}{2x-y+1≥0}\\{x≥1}\\{x-2y+3≤0}\end{array}\right.$,則$\frac{y}{x}$的取值范圍為($\frac{1}{2}$,3].

分析 由約束條件作出可行域,再由$\frac{y}{x}$的幾何意義,即可行域內(nèi)的動點與定點O連線的斜率求解.

解答 解:由實數(shù)x、y滿足$\left\{\begin{array}{l}{2x-y+1≥0}\\{x≥1}\\{x-2y+3≤0}\end{array}\right.$,作出可行域如圖,
聯(lián)立$\left\{\begin{array}{l}{x=1}\\{2x-y+1=0}\end{array}\right.$,解得A(1,3).
$\frac{y}{x}$的幾何意義為可行域內(nèi)的動點與定點O連線的斜率,
∵kOA=3.
∴則$\frac{y}{x}$的取值范圍是($\frac{1}{2}$,3].
故答案為:($\frac{1}{2}$,3].

點評 本題考查簡單的線性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法與數(shù)學(xué)轉(zhuǎn)化思想方法,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知變量x,y滿足約束條件$\left\{\begin{array}{l}{x-y≤2}\\{x+y≤4}\\{x≥1}\end{array}\right.$,則x2+y2取值范圍為( 。
A.[1,8]B.[4,8]C.[1,10]D.[1,16]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=2asin2x-2$\sqrt{3}$asinx•cosx+1在區(qū)間[0,$\frac{π}{2}$]的最大值為4,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.若$\overrightarrow a=(2x,1,3),\overrightarrow b=(1,-2y,9)$,且$\overrightarrow a∥\overrightarrow b$,則xy=-$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知△ABC的面積為S,且$\overrightarrow{AB}$•$\overrightarrow{AC}$=S,則tan2A的值為(  )
A.$\frac{1}{2}$B.2C.$\frac{3}{4}$D.-$\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.函數(shù)f(x)=axm(1-2x)n(a>0)在區(qū)間[0,$\frac{1}{2}$]上的圖象如圖所示,則m、n的值可能是(  )
A.m=1,n=1B.m=1,n=2C.m=2,n=3D.m=3,n=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.過點P(1,2)的直線l與圓(x-3)2+(y-1)2=5相切,若直線ax+y+3=0與直線l垂直,則a=(  )
A.$-\frac{1}{2}$B.$\frac{1}{2}$C.$-\frac{3}{7}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知x>0,y>0,x+y2=2,則log2x+2log2y的最大值為0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.圓x2-2ax+y2=4-a2在y軸上的截距為2,則實數(shù)a=$±\sqrt{3}$.

查看答案和解析>>

同步練習(xí)冊答案