A. | [1,e] | B. | (1,e] | C. | (1+$\frac{1}{e}$,e] | D. | [1+$\frac{1}{e}$,e] |
分析 由x1+x22•e${\;}^{{x}_{2}}$-a=0成立,解得x22•e${\;}^{{x}_{2}}$=a-x1,根據(jù)題意可得:a-1≥(-1)2e-1,且a-0≤12×e1,解出并且驗證等號是否成立即可得出答案.
解答 解:由x1+x22•e${\;}^{{x}_{2}}$-a=0成立,解得x22•e${\;}^{{x}_{2}}$=a-x1,
∴對任意的x1∈[0,1],總存在唯一的x2∈[-1,1],使得x1+x22•e${\;}^{{x}_{2}}$-a=0成立,
∴a-1≥(-1)2e-1,且a-0≤12×e1,
解得1+$\frac{1}{e}$≤a≤e,其中a=1+$\frac{1}{e}$時,x2存在兩個不同的實數(shù),因此舍去,a的取值范圍是(1+$\frac{1}{e}$,e].
故選:C.
點評 本題考查了函數(shù)的單調(diào)性、不等式的性質(zhì),考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2 | B. | $\frac{3}{2}$ | C. | $\frac{4}{3}$ | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 0 | B. | -7 | C. | -9 | D. | -3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com