【題目】如圖,四棱錐中,,,,PA=PD=CD=BC=1.

(1)求證:平面平面;

(2)求直線與平面所成角的正弦值.

【答案】(1)見證明;(2)

【解析】

(1)推導出ADBD,PABD,從而BD⊥平面PAD,由此能證明平面PAD⊥平面ABCD

(2)取AD中點O,連結(jié)PO,則POAD,以O為坐標原點,以過點O且平行于BC的直線為x軸,過點O且平行于AB的直線為y軸,直線POz軸,建立空間直角坐標系,利用空間向量法能求出直線PA與平面PBC所成角的正弦值.

(1)∵ABCD,∠BCD,PAPDCDBC=1,

BD,∠ABC,,∴,

AB=2,∴AD,∴AB2AD2+BD2,∴ADBD,

PABDPAADA,∴BD⊥平面PAD,

BD平面ABCD,∴平面PAD⊥平面ABCD

(2)取AD中點O,連結(jié)PO,則POAD,且PO

由平面PAD⊥平面ABCD,知PO⊥平面ABCD

O為坐標原點,以過點O且平行于BC的直線為x軸,過點O且平行于AB的直線為y軸,

直線POz軸,建立如圖所示的空間直角坐標系,

A,0),B,0),C,0),P(0,0,),

(﹣1,0,0),),

設平面PBC的法向量xy,z),

,取z,得(0,),

,),

∴cos,

∴直線PA與平面PBC所成角的正弦值為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】為保證樹苗的質(zhì)量,林業(yè)管理部門在每年3月12日植樹節(jié)前都對樹苗進行檢測,現(xiàn)從甲、乙兩種樹苗中各抽測了10株樹苗的高度單位長度:,其莖葉圖如圖所示,則下列描述正確的是( )

A. 甲種樹苗的平均高度大于乙種樹苗的平均高度,甲種樹苗比乙種樹苗長得整齊

B. 甲種樹苗的平均高度大于乙種樹苗的平均高度,乙種樹苗比甲種樹苗長得整齊

C. 乙種樹苗的平均高度大于甲種樹苗的平均高度,乙種樹苗比甲種樹苗長得整齊

D. 乙種樹苗的平均高度大于甲種樹苗的平均高度,甲種樹苗比乙種樹苗長得整齊

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某居民區(qū)有一個銀行網(wǎng)點(以下簡稱“網(wǎng)點”),網(wǎng)點開設了若干個服務窗口,每個窗口可以辦理的業(yè)務都相同,每工作日開始辦理業(yè)務的時間是8點30分,8點30分之前為等待時段.假設每位儲戶在等待時段到網(wǎng)點等待辦理業(yè)務的概率都相等,且每位儲戶是否在該時段到網(wǎng)點相互獨立.根據(jù)歷史數(shù)據(jù),統(tǒng)計了各工作日在等待時段到網(wǎng)點等待辦理業(yè)務的儲戶人數(shù),得到如圖所示的頻率分布直方圖:

(1)估計每工作日等待時段到網(wǎng)點等待辦理業(yè)務的儲戶人數(shù)的平均值;

(2)假設網(wǎng)點共有1000名儲戶,將頻率視作概率,若不考慮新增儲戶的情況,解決以下問題:

①試求每位儲戶在等待時段到網(wǎng)點等待辦理業(yè)務的概率;

②儲戶都是按照進入網(wǎng)點的先后順序,在等候人數(shù)最少的服務窗口排隊辦理業(yè)務.記“每工作日上午8點30分時網(wǎng)點每個服務窗口的排隊人數(shù)(包括正在辦理業(yè)務的儲戶)都不超過3”為事件,要使事件的概率不小于0.75,則網(wǎng)點至少需開設多少個服務窗口?

參考數(shù)據(jù):;

;.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)討論函數(shù)的單調(diào)性;

2)對任意的,恒成立,請求出的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知半圓,、分別為半圓軸的左、右交點,直線過點且與軸垂直,點在直線上,縱坐標為,若在半圓上存在點使,則的取值范圍是( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在P地正西方向8kmA處和正東方向1kmB處各有一條正北方向的公路ACBD,現(xiàn)計劃在ACBD路邊各修建一個物流中心EF,為緩解交通壓力,決定修建兩條互相垂直的公路PEPF,設

為減少對周邊區(qū)域的影響,試確定EF的位置,使的面積之和最小;

為節(jié)省建設成本,求使的值最小時AEBF的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),.

(1)討論的單調(diào)性;

(2)定義:對于函數(shù),若存在,使成立,則稱為函數(shù)的不動點.如果函數(shù)存在不動點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知空間四邊形ABCD,,,,,且平面平面BCD,則該幾何體的外接球的表面積為( 。

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某經(jīng)銷商從沿海城市水產(chǎn)養(yǎng)殖廠購進一批某海魚,隨機抽取50條作為樣本進行統(tǒng)計,按海魚重量(克)得到如圖的頻率分布直方圖:

1)若經(jīng)銷商購進這批海魚100千克,試估計這批海魚有多少條(同一組中的數(shù)據(jù)用該區(qū)間的中點值作代表);

2)根據(jù)市場行情,該海魚按重量可分為三個等級,如下表:

等級

一等品

二等品

三等品

重量(g

若經(jīng)銷商以這50條海魚的樣本數(shù)據(jù)來估計這批海魚的總體數(shù)據(jù),視頻率為概率.現(xiàn)從這批海魚中隨機抽取3條,記抽到二等品的條數(shù)為X,求x的分布列和數(shù)學期望.

查看答案和解析>>

同步練習冊答案