已知z是復(fù)數(shù),z+2i,均為實(shí)數(shù)(i為虛數(shù)單位),且復(fù)數(shù)(z+ai)2在復(fù)平面上對(duì)應(yīng)的點(diǎn)在第一象限,求實(shí)數(shù)a的取值范圍.
【答案】分析:設(shè)出復(fù)數(shù)的代數(shù)形式,整理出代數(shù)形式的結(jié)果,根據(jù)兩個(gè)都是實(shí)數(shù)虛部都等于0,得到復(fù)數(shù)的代數(shù)形式.代入復(fù)數(shù)(z+ai)2,利用復(fù)數(shù)的加減和乘方運(yùn)算,寫出代數(shù)的標(biāo)準(zhǔn)形式,根據(jù)復(fù)數(shù)對(duì)應(yīng)的點(diǎn)在第一象限,寫出關(guān)于實(shí)部大于0和虛部大于0,解不等式組,得到結(jié)果.
解答:解:設(shè)復(fù)數(shù)z=a+bi(a,b∈R),
由題意得z+2i=a+bi+2i=a+(b+2)i∈R,
∴b+2=0,即b=-2.
又∵,
∴2b+a=0,即a=-2b=4.∴z=4-2i.
∵(z+ai)2=(4-2i+ai)2=[4+(a-2)i]2=16-(a-2)2+8(a-2)i
對(duì)應(yīng)的點(diǎn)在復(fù)平面的第一象限,橫標(biāo)和縱標(biāo)都大于0,

解得a的取值范圍為2<a<6.
點(diǎn)評(píng):本題考查復(fù)數(shù)的加減乘除運(yùn)算及復(fù)數(shù)的代數(shù)形式和幾何意義,本題解題的關(guān)鍵是整理出所給的復(fù)數(shù)的代數(shù)形式的標(biāo)準(zhǔn)形式,本題是一個(gè)中檔題目.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知z是復(fù)數(shù),z+2i,
z2-i
均為實(shí)數(shù)(i為虛數(shù)單位).
(1)求z;
(2)如果復(fù)數(shù)(z-ai)2在復(fù)平面上對(duì)應(yīng)的點(diǎn)在第一象限,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2005•上海)已知z是復(fù)數(shù),z+2i,
z2-i
均為實(shí)數(shù)(i為虛數(shù)單位),且復(fù)數(shù)(z+ai)2在復(fù)平面上對(duì)應(yīng)的點(diǎn)在第一象限,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知z是復(fù)數(shù),
.
z
+2
2-i
=1+i
,則z等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知Z是復(fù)數(shù),Z+2i,
z2-i
均為實(shí)數(shù)(i為虛數(shù)單位),且復(fù)數(shù)(z+ai)2在復(fù)平面對(duì)應(yīng)的點(diǎn)在第二象限,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知z是復(fù)數(shù),z+3i、
z3-i
均為實(shí)數(shù)(i為虛數(shù)單位),
(1)求復(fù)數(shù)z;
(2)求一個(gè)以z為根的實(shí)系數(shù)一元二次方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案