13.某人經(jīng)營(yíng)一個(gè)抽獎(jiǎng)游戲,顧客花費(fèi)2元錢可購(gòu)買一次游戲機(jī)會(huì),每次游戲中,顧客從裝有1個(gè)黑球,3個(gè)紅球,6個(gè)白球的不透明袋子中依次不放回地摸出3個(gè)球(除顏色外其他都相同),根據(jù)摸出的球的顏色情況進(jìn)行兌獎(jiǎng).顧客獲得一等獎(jiǎng)、二等獎(jiǎng)、三等獎(jiǎng)、四等獎(jiǎng)時(shí)分別可領(lǐng)取獎(jiǎng)金a元、10元、5元、2元.若經(jīng)營(yíng)者將顧客摸出的球的顏色情況分成以下類別:A:1個(gè)黑球2個(gè)紅球;B:3個(gè)紅球;C:恰有1個(gè)白球;D:恰有2個(gè)白球;E:3個(gè)白球.且經(jīng)營(yíng)者計(jì)劃將五種類別按照發(fā)生機(jī)會(huì)從小到大的順序分別對(duì)應(yīng)中一等獎(jiǎng)、中二等獎(jiǎng)、中三等獎(jiǎng)、中四等獎(jiǎng)、不中獎(jiǎng)五個(gè)層次.
(Ⅰ)請(qǐng)寫出一至四等將分別對(duì)應(yīng)的類別(寫出字母即可);
(Ⅱ)若經(jīng)營(yíng)者不打算在這個(gè)游戲的經(jīng)營(yíng)中虧本,求a的最大值;
(Ⅲ)若a=50,當(dāng)顧客摸出的第一個(gè)球是紅球時(shí),求他領(lǐng)取的獎(jiǎng)金的平均值.

分析 (Ⅰ)分別求出P(A),P(B),P(C),P(D),P(E),由此能求出中一至四等獎(jiǎng)分別對(duì)應(yīng)的類別.
(Ⅱ)設(shè)顧客進(jìn)行一次游戲經(jīng)營(yíng)者可盈利X元,列出分布列,求出數(shù)學(xué)期望,由此能求出a的最大值.
(Ⅲ)a=50,當(dāng)顧客摸出的第一個(gè)球是紅球時(shí)時(shí),求出中一等獎(jiǎng)的概率,中二等獎(jiǎng)的概率,中三等獎(jiǎng)的概率,中四等獎(jiǎng)的概率,由此能求出他領(lǐng)取的獎(jiǎng)金的平均值.

解答 解:(Ⅰ)P(A)=$\frac{{C}_{1}^{1}{C}_{3}^{2}}{{C}_{10}^{3}}$=$\frac{3}{120}$,
P(B)=$\frac{{C}_{3}^{3}}{{C}_{10}^{3}}$=$\frac{1}{120}$,
P(C)=$\frac{{C}_{6}^{1}({C}_{1}^{1}{C}_{3}^{1}+{C}_{3}^{2})}{{C}_{10}^{3}}$=$\frac{36}{120}$,
P(D)=$\frac{{C}_{6}^{2}({C}_{1}^{1}+{C}_{3}^{1})}{{C}_{10}^{3}}$=$\frac{60}{120}$,
P(E)=$\frac{{C}_{6}^{3}}{{C}_{10}^{3}}$=$\frac{20}{120}$,
∵P(B)<P(A)<P(E)<P(C)<P(D),
∴中一至四等獎(jiǎng)分別對(duì)應(yīng)的類別是B,A,E,C.
(Ⅱ)設(shè)顧客進(jìn)行一次游戲經(jīng)營(yíng)者可盈利X元,則:

 X-(a-2)-8-3 1 2
 P $\frac{1}{120}$ $\frac{3}{120}$ $\frac{20}{120}$ $\frac{36}{120}$ $\frac{60}{120}$
∴$\frac{1}{120}(-a+2-24-60+36+120)≥0$,
解得a≤74,即a的最大值為74元.
(Ⅲ)此時(shí)中一等獎(jiǎng)的概率P1=$\frac{{C}_{2}^{2}}{{C}_{9}^{2}}$=$\frac{1}{36}$,
中二等獎(jiǎng)的概率P2=$\frac{{C}_{2}^{1}{C}_{1}^{1}}{{C}_{9}^{2}}$=$\frac{2}{36}$,
中三等獎(jiǎng)的概率P3=0,
中四等獎(jiǎng)的概率P4=$\frac{{C}_{6}^{1}({C}_{2}^{1}+{C}_{2}^{2})}{{C}_{9}^{2}}$=$\frac{18}{36}$,
∴$\frac{1}{36}(50×1+10×2+0+1×18)=\frac{22}{9}$(元),
∴此時(shí)顧客領(lǐng)取的獎(jiǎng)金的平均值為$\frac{22}{9}元$.

點(diǎn)評(píng) 本題考查概率的求法,考查離散型隨機(jī)變量的分布列和數(shù)學(xué)期望的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意排列組合知識(shí)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.設(shè)函數(shù)f(x)=|x-1|,g(x)=2|x-a|,a∈R.
(1)若a=2,求不等式f(x)-g(x)≤x-3的解集;
(2)若對(duì)?m>1,?x0∈R,f(x)+g(x)≤$\frac{{m}^{2}+m+4}{m-1}$成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.正四棱柱的一個(gè)側(cè)面面積為S,則其對(duì)角面面積為$\sqrt{2}S$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.2016年上半年,股票投資人袁先生同時(shí)投資了甲、乙兩只股票,其中甲股票賺錢的概率為$\frac{1}{3}$,賠錢的概率是$\frac{2}{3}$;乙股票賺錢的概率為$\frac{1}{4}$,賠錢的概率為$\frac{3}{4}$.對(duì)于甲股票,若賺錢則會(huì)賺取5萬元,若賠錢則損失4萬元;對(duì)于乙股票,若賺錢則會(huì)賺取6萬元,若賠錢則損失5萬元.
(Ⅰ)求袁先生2016年上半年同時(shí)投資甲、乙兩只股票賺錢的概率;
(Ⅱ)試求袁先生2016年上半年同事投資甲、乙兩只股票的總收益的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.為普及學(xué)生安全逃生知識(shí)與安全防護(hù)能力,某學(xué)校高一年級(jí)舉辦了安全知識(shí)與安全逃生能力競(jìng)賽,該競(jìng)賽分為預(yù)賽和決賽兩個(gè)階段,預(yù)賽為筆試,決賽為技能比賽,現(xiàn)將所有參賽選手參加筆試的成績(jī)(得分均為整數(shù),滿分為100分)進(jìn)行統(tǒng)計(jì),制成如下頻率分布表.
分?jǐn)?shù)(分?jǐn)?shù)段)頻數(shù)(人數(shù))頻率
[60,70)9x
[70,80)y0.38
[80,90)160.32
[90,100)zs
合計(jì)p1
(1)求出上表中的x,y,z,s,p的值;
(2)按規(guī)定,預(yù)賽成績(jī)不低于90分的選手參加決賽.已知高一(2)班有甲、乙兩名同學(xué)取得決賽資格,記高一(2)班在決賽中進(jìn)入前三名的人數(shù)為X,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.拋擲一枚硬幣,記$X=\left\{\begin{array}{l}1,{\;}^{\;}正面向上\\-1,反面向上\end{array}\right.$,則E(X)=(  )
A.0B.$\frac{1}{2}$C.1D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.當(dāng)|x|≤1時(shí),不等式2px2+qx-p+1≥0恒成立,求p+q的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知橢圓C:$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{33}}{7}$,且(4,0)在橢圓C上,圓M:x2+y2=65.
(1)求橢圓C的方程;
(2)已知A(m,n)為圓M上的任意一點(diǎn),過點(diǎn)A作橢圓C的兩條切線l1,l2,試探究直線l1,l2的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)的一個(gè)焦點(diǎn)是($\sqrt{3}$,0),點(diǎn)P($\sqrt{3}$,$\frac{1}{2}$)在橢圓上,O為坐標(biāo)原點(diǎn),當(dāng)直線l:y=kx+m(m≠0)與橢圓C相交于A、B兩點(diǎn)時(shí),對(duì)滿足條件的任意m的值,都有|OA|2+|OB|2=5.
(1)求橢圓C的方程.
(2)求△AOB的面積S的最大值,并求出相應(yīng)m的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案